

UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY COURSE SYLLABUS FALL 2019

1. Course: Chemistry 203, General Chemistry: Change and Equilibrium

LEC	DAYS	TIME	ROOM	INSTRUCTOR	OFFICE	EMAIL	OFFICE HOURS
L01	MWF	11:00-11:50	SB 103	Dr. Yuen-ying Carpenter	EEEL 237B	yyscarpe@ucalgary.ca	Cas
L02	MWF	12:00-12:50		Dr. ruen ying carpenter	222 207 5	yyoodipo@dodigdiy.od	See D2L
L03	TuTh	08:00-09:15	SB 103	Dr. Jing Li	SA 258	li22@ucalgary.ca	

Course coordinator (including labs/tutorials): Dr. Yuen-ying Carpenter (EEEL 237B | yyscarpe@ucalgary.ca)

Course website: <u>d2l.ucalgary.ca</u> [CHEM 203 - (Fall 2019) - General Chemistry: Change and Equilibrium] Departmental Office: Room SA 229 | Tel: 403-220-5341 | e-mail: <u>chem.info@ucalgary.ca</u>

To avoid IT problems, it is recommended that the students use their U of C account for all course correspondence. Please include 'CHEM 203' in the subject line of your email.

- 2. Course Description: An introduction to university chemistry from theoretical and practical perspectives that focuses on an exploration of the fundamental links between kinetics, equilibria and thermodynamics and explores acidity/basicity and redox behaviour using inorganic and organic examples.
- **3. Recommended Textbook(s):** *Chemistry* 2nd *edition* by Flowers, Theopold, Langley, Robinson, *et al.* and published by Open Stax. Note: Our recommended text is an open-educational resource, freely available online through the Open Stax website (https://openstax.org/details/books/chemistry-2e). You are welcome to (i) refer to the text online, (ii) download the PDF to your own device, or (iii) purchase a print copy through the bookstore.

Recommended practice resources:

Top Hat – *Active participation is an important part of your lectures.* You are strongly recommended to bring you cell phone, tablet, or laptop to lectures and participate during in-class Top Hat activity questions. Access to Top Hat is free for University of Calgary students.

Sapling Learning – *Practice solving chemistry problems is a critical component of this course.* Recommended practice questions (with feedback) will be made available for the course on the online Sapling Learning platform. You can purchase a license for Sapling through the bookstore, or access Sapling for free on a limited number of computers on-campus.

Other REQUIRED course materials (available from the bookstore):

- Lab coat & safety glasses
- A non-programmable scientific calculator (Casio FX 260 or equivalent)

Course Syllabus Page 1 of 5

4. Course learning objectives and associated textbook references:

Note: Not all sub-sections of each textbook chapter will be covered. More details will be provided during the term.

Enduring Understandings	Learning Objectives		
Gases and Stoichiometry	Chapter 9 and Selected Review from Chapters 1-4		
To determine what is happening quantitatively in	Review: Interpret, predict, and write formulas for chemical species.		
chemical reactions one must use the principles of stoichiometry.	Review: Identify, generate and balance chemical equations.		
	Review: Identify limiting and excess reactant(s) and use them to calculate theoretical and percent yields.		
	Review: Interconvert between concentrations, moles and masses of chemical species in solution.		
	Use the ideal gas law to do stoichiometric calculations involving gases.		
Gases are good systems for understanding molecular behaviour and its relationship to properties such as temperature and pressure.	Interconvert between partial pressures, mole fractions of gases with and total pressure of a gaseous system.		
temporature una pressure.	Describe the Kinetic Molecular theory of gases (KMT). Use this model to explain relationships between temperature and particle speeds. Use this model to explain why pressure varies as n, V and T are altered.		
	Describe the limitations of the ideal gas law		
Equilibrium	Chapter 13		
Most reactions attain a state of dynamic equilibrium.	Sketch and interpret graphs that qualitatively describe dynamic equilibria.		
	Calculate equilibrium constants from experimental data. Calculate equilibrium concentrations based on initial conditions and K_{eq} .		
The reaction quotient is used to determine the progress or extent of a reaction mixture.	Write K/Q expressions for an equilibrium reaction.		
progress of extent of a reaction mixture.	Use K and Q values to predict the direction of a reaction for a given set of reaction conditions (concentrations, P's, T etc.).		
The extent of a reaction can be altered by changing the conditions of a system.	Qualitatively predict changes to a system at equilibrium resulting from adding a common ion or changing concentration, P, V or T.		
Thermodynamics	Chapters 5 and 16		
Chemical changes usually involve energy changes.	Define the terms system, surrounding and universe as applied to a chemical change.		
	Identify standard states of common chemical compounds.		
	Define enthalpy of formation and bond dissociation enthalpy, and use these values to determine or estimate enthalpy change for a reaction.		
	Relate the enthalpy change for a chemical process to the heat released/absorbed during that process.		
	Relate the specific heat of a substance to the temperature change when heat is produced, absorbed, or transferred.		
	Compare the relative pressure-volume work done by or on a system in different scenarios.		
	Relate changes in the internal energy of a system to the work done by/on the system and the heat released/absorbed by the system.		
Reaction coordinate diagrams visually represent energy changes during a chemical change.	Generate and use reaction coordinate diagrams to explain the energy changes that occur during a chemical change.		

Course Syllabus Page 2 of 5

Enduring Understandings	Learning Objectives
Enthalpy and entropy changes both contribute to the free energy change of any chemical change.	Define and determine qualitatively and quantitatively the enthalpy and entropy changes for a chemical change.
The free energy change of a chemical change can be used to determine its spontaneity.	Qualitatively and quantitatively relate enthalpy and entropy to the free energy or spontaneity of a chemical change.
The spontaneity of chemical changes can be varied by changing conditions.	Qualitatively and quantitatively examine the temperature at which spontaneity changes.
The spontaneity of chemical changes relates to the extent of the reaction.	Interconvert between $\Delta_r G$, $\Delta_r G^\circ$, Q and K.
Kinetics	Chapter 12
The rate law is used to quantitatively examine the rate of a reaction.	Distinguish between average and instantaneous rates of reaction based on graphs of concentration <i>vs.</i> time.
	Use graphs of concentration vs. time to compare rates and rate laws for different reactions.
	Determine the differential and/or integrated rate laws for a given reaction using experimental data.
The rate of a reaction can be altered by changing the conditions of a system.	Predict the change in the rate of reaction that results from changing reactant concentrations or temperature, or from the addition of a catalyst.
Rates can be explained at a molecular-level using	Use collision theory to qualitatively explain differing reaction rates.
collision theory.	Use the Arrhenius equation to quantify the relationships between the activation energy, temperature and rate constant.
Reactions can occur via a series of steps or a mechanism.	Describe the concept of a reaction mechanism and identify reasonable reaction mechanisms consistent with the experimentally-determined rate law for a given reaction.
	Identify the rate-determining step, intermediates and catalysts present in a given reaction mechanism.
Reaction coordinate diagrams provide a representation of the energy changes that influence	Identify plausible reaction coordinate diagrams based on information about a reaction mechanism.
rate.	Label key kinetic components of a reaction coordinate diagram for a chemical change (i.e. transition state, intermediate, activation energy).
Catalysts provide alternative mechanisms, thereby altering the energy changes and rates for a reaction.	Describe the effect of a catalyst on the activation energy of a reaction.
Applying Chemical Equilibria: Acids & Ba	ses Chapter 14
The pH of an aqueous solution of an acid or base is determined by both concentration and the extent of	Distinguish between K and p K and relate these values to acid/base strength and to hydronium ion concentrations $[H_3O^+]$ in solution.
their reaction with water.	Quantitatively relate K_a , pK _a , K_b , pK _b , pH, [H ₃ O ⁺] and [OH ⁻].
	Calculate the pH for an acid or a base in aqueous solution.
Weak acids and bases are used to prepare buffer solutions that are used to resist changes in pH.	Describe how a buffer functions and outline how to prepare a buffer with a given pH.
	Calculate the pH of a buffer solution before and after the addition of strong acids or bases.
	Qualitatively compare the acid or base buffer capacities of solutions.

Course Syllabus Page 3 of 5

Enduring Understandings	Learning Objectives		
Titration experiments are important for studying acids and bases.	Distinguish between the titration of strong acids/bases and the titration of weak acids/bases.		
	Qualitatively and quantitatively describe how pH varies during a titration by identifying the major and minor species in solution at each stage.		
	Use titration to determine the identity of an acid or base.		
Applying Chemical Equilibria: Solubility	Chapter 15.1		
The solubility of salts in aqueous solution is related to their extent of dissociation in water.	Qualitatively and quantitatively relate the solubility of salts to \mathcal{K}_{sp} .		
their extent or dissociation in water.	Predict how the solubility of a salt will be affected by changing conditions.		
Applying Equilibria and Thermodynamics	Electrochemistry Selected parts of Chapter 17		
An electrochemical cell provides a means to generate an electric potential from a redox reaction.	Compare standard and non-standard cell potentials by qualitatively predicting how the cell voltage will change with concentration.		
The electrical potential generated by an electrochemical cell is related to the spontaneity and extent of the redox reaction.	Relate the cell voltage (E°_{cell}) and free energy ($\Delta_r G^{\circ}$) of reactions under standard conditions to the equilibrium constant (K) for a redox reaction.		

5. Laboratory Experiments: (5 experiments on alternate weeks, 3 hours in laboratory biweekly, see schedule)

- Experiment 1. I can't believe it's soap
- Experiment 2. Determining the equilibrium constant for the formation of ferric thiocyanate, Fe(SCN)2+
- Experiment 3. Investigation into the kinetic behaviour of aqueous phenolphthalein solutions
- Experiment 4. Identification of unknown acids by titration
- Experiment 5. Preparation of a buffer solution & investigation of its properties

(5 tutorials on alternate weeks, 1.25 hours in tutorials biweekly, see schedule)

Bi-weekly tutorial topics include:

- Gas laws and stoichiometry
- Enthalpy, heat, and work
- Equilibrium
- Kinetics

6. Tutorials:

• Acid and Base Solutions

Department Approval Electronically Approved Date August 29, 2019

Course Syllabus Page 4 of 5

Schedule for Fall 2019

SEPTEMBER 2019

SUN	MON	TUES	WED	THUR	FRI	SAT
1	2 Labour Day	3	4	5 First day of classes	6	7
8	9	10	11	12 Last day to drop	13 Last day to add	14
15	16	17 Tut 1	18	19	20	21
22	23	24 Lab 1	25	26	27	28
29	30					

OCTOBER 2019

SUN	MON	TUES	WED	THUR	FRI	SAT
		1 Tut 2	2	3	4	5
6	7	8 Lab 2	9	10	11	12
13	14 Thanksgiving	15 Tut 3	16	17	18	19
20	21 Term test 1	22 Lab 3	23	24	25	26
27	28	29 Tut 4	30	31		

NOVEMBER 2019

SUN	MON	TUES	WED	THUR	FRI	SAT
					1	2
3	4	5 Lab 4	6	7	8	9
10	11 Reading week	12 Reading week	13 Reading week	14 Reading week	15 Reading week	16
17	18 Term test 2	19 Tut5	20	21	22	23
24	25	26 Lab 5	27	28	29	30

DECEMBER 2019

SUN	MON	TUES	WED	THUR	FRI	SAT
1	2	3	4	5	6 Last day of classes	7
8	9 EXAMS BEGIN	10	11	12	13	14
15	16	17	18	19 EXAMS END	20	21

Course Syllabus Page 5 of 5