1. COURSE: CHEMISTRY 409, Applied Chemistry and Chemical Pathways for Engineers

<table>
<thead>
<tr>
<th>LEC</th>
<th>DAYS</th>
<th>TIME</th>
<th>ROOM</th>
<th>INSTRUCTOR</th>
<th>OFFICE</th>
<th>PHONE</th>
<th>EMAIL</th>
<th>OFFICE HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>TR</td>
<td>8:00-9:15</td>
<td>ICT121</td>
<td>Dr. Ashley Causton</td>
<td>SA 144A</td>
<td>403-210-3968</td>
<td>acauston@ucalgary.ca</td>
<td>T10-12</td>
</tr>
</tbody>
</table>

To avoid IT problems, it is recommended that the students use their U of C account for all course correspondence. Please use “CHEM 409” in the Subject of your e-mail.

Desire 2 Learn (D2L) Site: CHEM 409 L01 - (Fall 2019) - Appl Chem & Chem Path For Engg

Departmental Office: Room SA 229, Tel: (403) 220-5341, e-mail: chem.undergrad@ucalgary.ca

2. Course Description: Analysis of industrial chemical processes based on reaction pathways to infer system performance including co-product formation and the role of catalysts. Examples from oil, gas, coal and petrochemical processing.

4. Topics Covered:
 Introduction to the Chemical Industry

 Sources of raw materials:
 - Application of phase and phase change to purify/separate raw materials
 - e.g. Frasch process for mining sulfur
 - e.g. Claude process for distillation of air to produce nitrogen, oxygen and argon

 Processes in the Oil Refinery
 - Petroleum Refining:
 - Simple purification
 - H₂S removal from crude oil (Acid-Base Chemistry)
 - Distillation (purification by phase change)
 - Pyrolysis – bond strength and understanding radical reactions
 - Catalytic Cracking – understanding carbocationic reactions
 - Elimination
 - Substitution (and polymerization)
 - Rearrangement

 Production of Light Alkenes
 - Thermodynamics and kinetics

 Production of Synthesis Gas
Inorganic Bulk Chemicals
- General Considerations in the Design of an Industrial Chemical Process:
 - Green Chemistry
 - Reaction Thermodynamics (equilibria – application of LeChatelier’s principle in industry)
 - Reaction Kinetics (activation energy)
 - The Contact Process for sulfuric acid production
 - Synthesis of ammonia
 - Synthesis of nitric acid
- Electrochemistry:
 - Definitions of oxidation and reduction
 - Direct and indirect redox processes
 - Basic electrochemical cell
 - Corrosion
 - Balancing redox equations
 - Standard cell potential
 - Electrolysis (active and passive electrodes)
 - Production of Cl₂, NaOH (and H₂) from NaCl(aq.)
- Acid-Base Chemistry:
 - Three definitions of acid and base
 - Fundamental concepts (on an atomic level) that determine acid-base properties of compounds
 - Ammonium Nitrate and Ammonium Sulfate
- Catalysts:
 - General Introduction – Activity / Selectivity / Stability
 - Heterogeneous – Mechanisms, Physical adsorption, chemisorption
 - Hydrogenation
 - Zeolites (uses as water softeners and catalytic cracking)
 - Homogenous – Mechanisms, 16/18 electron rule
 - Monsanto Acetic Acid Process
- Polymer Chemistry:
 - Nucleophilic alkyl and acyl substitution (and potential side reactions)
 - Polyurethane
 - Epoxy resins
 - Thermoplastics and thermosets
 - Chain growth and step growth polymerization
 - How chemical structure of a polymer relates to its bulk properties
 - Kevlar versus Nylon
- Selected Topics
 - Reactions of Arenes:
 - Benzene structure
 - Electrophilic Aromatic Substitution (and ways of generating the carbocation)
 - The Cumene Process (and a mechanistic explanation of the associated side reactions)
 - BHT synthesis
 - Bisphenol A synthesis
 - Corrosion and Corrosion Control
 - Fouling and fouling control
 - Biotechnology
 - Process Development

Department Approval: Electronically Approved Date September 3, 2019