Chem 559 Syllabus Fall 2019

Goals: By the end of this course, students will be expected to be able to interpret and use the spectroscopic data from UV, MS, IR and NMR (including 2D) spectra to be able to (a) distinguish similar structures or (b) deduce the structure of an unknown organic molecule.

Deducing structure from spectra - the fragment approach to spectroscopy problem solving

Ultra-violet / visible spectroscopy
- Basic instrumentation principles
- Beer Lambert Law
- Forbidden and allowed transitions
- Chromophores: structural and solvent effects, including orbital perspective
- Rules for predicting λ_{max} for dienes, enones, polyenes and aromatic systems

Mass spectroscopy
- Basic instrumentation principles including overview of different ionisation techniques
- Nitrogen rule
- Isotope patterns (13C, halogens Cl and Br including polyhalogenated etc.)
- Typical fragmentation & rearrangement pathways of common functional groups with mechanistic analysis

Infra-red spectroscopy
- Basic instrumentation principles
- Hooke's Law model of molecular vibrations
- Vibrational modes and coupled vibrations
- Functional group characteristic frequencies
- Structural effects on vibrational frequencies (hydrogen bonding, conjugation, ring strain, aromatic substitution patterns, tautomerism)

Nuclear Magnetic Resonance spectroscopy
- Basic instrumentation principles
- NMR active nuclei
- Factors that influence chemical shift (electronegativity, anisotropy, sample conditions)
- Spin system notation (Pople)
- Chemical and magnetic equivalence (topicity)
- Homo- and heteronuclear coupling
 - Splitting diagrams
 - Strong (2nd order) and weak (1st order), effect of $\Delta V/J$ on observed coupling pattern
 - Typical coupling constants J for 2-, 3- and longer range coupling
 - Mechanism of coupling
 - Karplus equations
- Dynamic NMR (conformational, tautomeric etc.)
- Methods for calculating chemical shifts (H and 13C NMR)
- C NMR (broadband, off resonance, APT, DEPT)
- NOE effect and spectroscopic methods
- Correlation (2D) spectroscopy (especially H / H, H / C and C / C methods).