

DEPARTMENT OF CHEMISTRY COURSE SYLLABUS WINTER 2017

COURSE: CHEMISTRY 579 - Surface and Colloid Chemistry for Engineers

LEC	DAYS	TIME	ROOM	INSTRUCTOR	OFFICE	PHONE	EMAIL	OFFICE HOURS
L01	MWF	10:00-10:50	ENA 103	Dr. V. Thangadurai	ES 656D	210 8649	vthangad@ucalgary.ca	By appointment

Course website: Desire 2 Learn (D2L)

TEXTBOOK: Not Required

PROPOSED TOPICS:

1. Surface and Colloid Chemistry and Importance

- 1.1 What is a colloid?
- 1.2 What is a phase?
- 1.3 Distinction between true solutions and colloids
- 1.4 Technological applications of surface forces
- 1.5 Surface area / Specific area
- 1.6 Sedimentation & Diffusion

2. Surface Tension/Surface Energy

- 2.1 Surface Tension
- 2.2 Contact Angle
- 2.3 Experimental Methods for Surface Tension & Contact Angle
- 2.4 Laplace-Young Equation
- 2.5 Capillary Rise Technique
- 2.6 Kelvin Equation

3. Thermodynamics of Interfaces - Fundamentals

- 3.1 Definition of System Variables
- 3.2 Thermodynamic Potentials
- 3.3. Thermodynamic definition of Surface Tension
- 3.4 Gibbs Adsorption Isotherm

4. Practical Applications of Interface Sciences - Electrochemistry and Non-electrochemical Aspects

- 4.1 The Electric Double Layer Introduction
- 4.2 Helmholtz and Gouy-Chapman Model
- 4.3 Poisson Boltzmann Theory (Debye Length)
- 4.3 Experimental Methods to Determine Surface Charges
- 4.4 The Electrostatic Double-Layer Force (DLVO equation)

5. Experimental Techniques in Interface Science- Solid Surfaces, Adsorption

- 5.1 Introduction to Surface and Bulk Solid State Methods
- 5.2 X-ray Diffraction Methods
- 5.3 Adsorption Isotherms

(Types, Langmuir & Brunauer, Emmett & Teller (BET) Isotherms)

5.4 BET Surface Area Analysis

This course does not have a laboratory component.

Department Approval: Approved by Department Head Date: December 20, 2016