COURSE: CHEMISTRY 579, Surface and Colloid Chemistry for Engineers

MATERIAL TO BE COVERED:

(1) Introduction to colloids and surfaces
 - common colloidal systems
 - introduction and importance of common terms, e.g., specific surface area
 - review of free energies and chemical potentials

(2) Solid-gas interfaces
 - Crystallite face indexing and surface defects
 - Basic gas adsorption and the Langmuir isotherms
 - Empirical isotherms, IUPAC isotherm classification and isosteric heats of adsorption
 - Common industrial mesoporous solids
 - The BET isotherm and mesopore volume distribution
 - Exercise 3 – drying a high-pressure CO₂ stream

(3) Kinetic and statistical forces – particle and continuous phase
 - External forces and drift (terminal) velocity
 - Sedimentation coefficients (measurement)
 - Viscous forces and Brownian motion

(4) Particle-particle electrostatic forces
 - Sedimentation equilibrium - a case study for aqueous pollutants
 - Particle-particle interactions
 - Inter-molecular forces related to inter-particulate forces
 - Hamaker theory
 - Electrical charges in dispersions
 - Guoy-Chapman and the Debye-Hückel approximation
 - Debye thickness and total surface charge
 - Double layer overlap
 - DVLO recap and the CCC scale

(5) Colloidal stability
 - Stability ratio and overall flocculation rate
 - Steric effects
 - Aerosols - air filtration
 - Surface tension
 - Sesile drop, wetting and spreading, porosimetry
 - Wetting irregular surfaces and the Jamin effect
 - Surface active solutes – miscible, immiscible and partially miscible
 - Emulsion stability – HLB scale, PITs and emulsifiers in froth flotation
 - Foams

TEXTBOOKS:
Although no textbook is required, reading will be assigned using on-line resources available to University of Calgary Students. The following additional texts may be useful to students:

* Colloid Science: Principles, Methods and Applications, 3rd. Terence Cosgrove, Blackwell (2005) [online at the University of Calgary]
* Contact Angle, Wettability and Adhesion, Vol. 4., Kash L. Mittal (2006) [Online at the University of Calgary]