UNIVERSITY OF CALGARY DEPARTMENT OF CHEMISTRY COURSE SYLLABUS FALL 2014

COURSE: CHEMISTRY 689.07, Modeling Multiscale systems

LEC	DAYS	TIME	ROOM	INSTRUCTOR	OFFICE	PHONE	EMAIL	OFFICE HOURS
L01	TBD	TBD	TBD	Dr. Dennis Salahub	BI 556	220-3720	dsalahub@ucalgary.ca	By email appt.

TEXTBOOKS: Suggested references (plus material will be posted on D2L)

- 1. Szabo and Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Macmillan, NY.
- 2. Parr and Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press,NY
- 3. Heine, Joswig and Gelessus, Computational Chemistry Workbook, Wiley-VCH, Weinheim
- 4. deMon Users' Guide, http://demon-software.com
- 5. NAMD and VMD Users' Guides and Tutorials, http://www.ks.uiuc.edu/Research/namd/
- 6. Leach, Molecular Modeling, Principles and applications, Prentice Hall, Harlow
- 7. Frenkel and Smit, Molecular Simulation, from algorithms to applications, Academic, London

TOPICS COVERED AND SUGGESTED READING:

- 1. Multiscale modeling what and why?
- 2. Quantum chemistry, electronic structure theory
 - a. Many-electron wave functions and the Hartree-Fock method
 - b. Density Functional Theory
 - i. Hohenberg-Kohn theorem
 - ii. Kohn-Sham Equations
 - iii. Implementation with Gaussian orbitals deMon
- 3. Molecular Dynamics
 - a. Newtonian mechanics
 - b. Empirical force fields
 - c. Simulation algorithms CHARMM
 - d. Applications using NAMD for small models ion solvation
 - e. Applications to proteins or other complex simulations

LABORATORY EXPERIMENTS:

Hands-on exercises and projects using deMon and NAMD software

Department Approval: Approved by Department Head Date: August 19 2014