1. **Course:** CPSC 355: Computing Machinery I
 Lecture Sections:
 L01, MWF 14:00-14:50, SA 106, Leonard Manzara, ICT 703, 220-3518, manzara@cpsc.ucalgary.ca
 L02, MWF 10:00-10:50, AD 140, Leonard Manzara, ICT 703, 220-3518, manzara@cpsc.ucalgary.ca
 Office Hours: MWF 11:00-12:00
 Course Website: D2L
 Computer Science Department Office, ICT 602, 220-6015, cpsc@cpsc.ucalgary.ca

2. **Prerequisites:** One of CPSC 219, 233 or 235
 (http://www.ucalgary.ca/pubs/calendar/current/computer-science.html#3620)

3. **Grading:** The University policy on grading and related matters is described in sections F.1 and F.2 of the online University Calendar. In determining the overall grade in the course the following weights will be used:
 - Assignments: 30%
 - Midterm Exam: 30%
 - Final Exam: 40%

 (Wednesday November 2nd, 2016 at 18:00 in ENE 241 and 243)

 This course will have a Registrar’s Scheduled Final Exam.

 Special Regulations affecting Final grade: Each of the above components will be given a percentage grade. The final grade will be calculated using the weights given above and then converted to a final letter grade using the table given below. **To achieve an overall grade of C- or better in the course, you must achieve a minimum grade of C- or better in the final exam and complete all assignments.**

4. **Missed Components of Term Work:** The regulations of the Faculty of Science pertaining to this matter are found in the Faculty of Science area of the Calendar, Section 3.6. It is the student’s responsibility to familiarize themselves with these regulations. See also Section E.6 of the University Calendar.

5. **Scheduled Out-of-Class Activities:** REGULARLY SCHEDULED CLASSES HAVE PRECEDENCE OVER ANY OUT-OF-CLASS-TIME ACTIVITY. If you have a clash with this out-of-class activity, please inform your instructor as soon as possible so that alternative assignments can be arranged.

6. **Course Materials:**
 - *The C Programming Language*, Brian Kernighan & Dennis Ritchie, Prentice Hall (Required)

 Online Course Components: None.

7. **Examination Policy:** Closed book. No aids of any kind are permitted. Students should also read the Calendar, Section G, on examinations.

8. **Approved Mandatory and Optional Course Supplemental Fees:** None.

9. **Writing across the Curriculum Statement:** In this course, the quality of the student’s writing in the weighted components of the course will be a factor in the evaluation of these components. See also Section E.2 of the University Calendar.
10. **Human Studies Statement:** Students will be expected to participate as subjects or participants in projects. See also Section E.5 of the University Calendar.

11. **OTHER IMPORTANT INFORMATION FOR STUDENTS:**

 a) **Misconduct:** Academic misconduct (cheating, plagiarism, or any other form) is a very serious offense that will be dealt with rigorously in all cases. A single offence may lead to disciplinary probation or suspension or expulsion. The Faculty of Science follows a zero tolerance policy regarding dishonesty. Please read the sections of the University Calendar under Section K, Student Misconduct to inform yourself of definitions, processes and penalties.

 b) **Assembly Points:** In case of emergency during class time, be sure to FAMILIARIZE YOURSELF with the information on assembly points which can be found in each classroom and building.

 c) **Student Accommodations:** Students needing an Accommodation because of a Disability or medical condition should contact Student Accessibility Services in accordance with the Procedure for Accommodations for Students with Disabilities available at http://www.ucalgary.ca/policies/files/policies/procedure-for-accommodations-for-students-with-disabilities_0.pdf. Students needing an Accommodation in relation to their coursework or to fulfil requirements for a graduate degree, based on a Protected Ground other than Disability, should communicate this need, preferably in writing, to the Associate Head of Computer Science.

 d) **Safewalk:** Campus Security will escort individuals day or night (http://www.ucalgary.ca/security/safewalk/). Call 403-220-5333 for assistance. Use any campus phone, emergency phone or the yellow phones located at most parking lot pay booths.

 e) **Freedom of Information and Privacy:** This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). As one consequence, students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information see also http://www.ucalgary.ca/secretariat/privacy

 f) **Student Union Information:** VP Academic (403) 220-3911 suvpaca@ucalgary.ca SU Faculty Rep (403) 220-3913 science1@su.ucalgary.ca, science2@su.ucalgary.ca and science3@su.ucalgary.ca. Student Ombuds Office: (403) 220-6420 ombuds@ucalgary.ca, http://ucalgary.ca/provost/students/ombuds

 g) **Internet and Electronic Device Information:** You can assume that in all classes that you attend your cell phone should be turned off unless instructed otherwise. All communications with other individuals via laptop computers, cell phones or other devices connectable to the internet in not allowed during class time unless specifically permitted by the instructor. If you violate this policy you may be asked to leave the classroom. Repeated abuse may result in a charge of misconduct.

 h) **U.S.R.I.:** At the University of Calgary feedback provided by students through the Universal Student ratings of Instruction (USRI) survey provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses (www.ucalgary.ca/usri). Your responses make a difference – please participate in USRI surveys.

 Department Approval__Date__________________________

 Associate Dean’s Approval for out of regular class-time activity: ___________________________ Date:__________________________

 Associate Dean’s Approval for Alternate final examination arrangements: __________________________ Date:__________________________

 A signed copy of this document is kept on file in the Computer Science main Office ICT 602
<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>95-100</td>
</tr>
<tr>
<td>A</td>
<td>90-95</td>
</tr>
<tr>
<td>A-</td>
<td>85-90</td>
</tr>
<tr>
<td>B+</td>
<td>80-85</td>
</tr>
<tr>
<td>B</td>
<td>75-80</td>
</tr>
<tr>
<td>B-</td>
<td>70-75</td>
</tr>
<tr>
<td>C+</td>
<td>65-70</td>
</tr>
<tr>
<td>C</td>
<td>60-65</td>
</tr>
<tr>
<td>C-</td>
<td>55-60</td>
</tr>
<tr>
<td>D+</td>
<td>50-55</td>
</tr>
<tr>
<td>D</td>
<td>45-50</td>
</tr>
<tr>
<td>F</td>
<td>0-45</td>
</tr>
</tbody>
</table>
Introduction
Course Objectives

Computer Architectures and Assembly Language Programming
Basic Computer Architecture
 High-Level Architecture
 CPU
 System Clock
 Random Access Memory
 Bus
 Secondary Memory
 Peripheral Devices
 Basic CPU Architectures
 RISC and CISC Architectures
 Instruction Cycle
 Assembly Language Programming
 Assemblers
 Macro Preprocessors

ARMv8-A Architecture
 Introduction
 General-Purpose Registers
 ARMv8 A64 Assembly Language
 Basic Program Structure
 Basic Arithmetic Instructions
 Branch Instructions and Condition Codes
 Loops
 If and If-Else Constructs
 Introduction to the gdb Debugger

Binary Numbers and Integer Representations
 Binary Numbers
 Unsigned Integers
 Signed Integers
 Hexadecimal and Octal Numbers
 Integer Classes and Subtypes

Bitwise Operations
 Bitwise Logical Instructions
 Bitwise Shift Instructions
 Bitfield Operations
 Sign/Zero Extend Operations

Binary Arithmetic
 Modulus Arithmetic
 Addition
 Subtraction
 Signed Number Branching Conditions
 Unsigned Arithmetic
 Unsigned Number Branching Conditions
 Multiplication
 Division
 Extended Precision Arithmetic

The Stack
 Memory and Memory Addressing
 Stack Memory
 The Stack and Frame Pointers
 Frames and Frame Records
 Creating and Addressing Stack Variables
 Memory Alignment
Basic Load and Store Instructions
Load/Store Addressing Modes
Stack Variable Offset Macros

Data Structures
 One-Dimensional Arrays
 Multidimensional Arrays
 Structures
 Nested Structures

Subroutines
 Introduction
 Open (Inline) Subroutines
 Closed Subroutines
 Subroutine Linkage
 Saving and Restoring Registers
 Arguments to Subroutines
 Pointer Arguments
 Returning Integers
 Returning Structures
 Subroutines with 9 or More Arguments
 Optimizing Leaf Subroutines

External Data and Text
 Introduction
 External Variables
 The text, data, and .bss Sections
 The ASCII Character Set
 Creating and Addressing String Literals
 External Arrays of Pointers
 Command-Line Arguments

Separate Compilation
 Relocatable Object Code
 Separate Compilation and Linking

Input and Output
 Introduction
 System I/O
 Standard I/O
 File I/O

Floating-Point Numbers
 Introduction
 Fixed-Point Numbers
 Floating-Point Single Format
 Floating-Point Double Format
 Floating-Point NaNs
 Floating-Point Registers
 Basic Floating-Point Instructions
 Floating-Point Arguments
 Floating-Point Return Values

Machine Instructions (as time permits)
 Introduction
 R-Type Format
 D-Type Format
 I-Type Format
Learning Outcomes:

By the end of the course, students will:

- By the end of this course, students should be able to create a program that consists of separately compiled source code modules that mix C code and assembly language code.
- By the end of this course, students should be able to take high-level language constructs and translate them into an equivalent assembly language implementation.
- By the end of this course, students should be able to explain the underlying machine representation of common data types such as signed and unsigned integers, characters, strings, and floating point numbers.
- By the end of this course, students should be able to explain the architecture of CPUs in common current use.
- By the end of this course, students should be able to describe the architecture of a basic computer.
- By the end of this course, students should be able to design and implement assembly language programs of moderate complexity.