1. **Course:** CPSC 359, Computing Machinery II -- Fall 2017

 Lecture 01: (MW, 15:30-16:45 in ENE239)

<table>
<thead>
<tr>
<th>Instructor Name</th>
<th>Email</th>
<th>Phone</th>
<th>Office</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey Edwin Boyd</td>
<td>boyd@cpsc.ucalgary.ca</td>
<td>220 6015</td>
<td>ICT 711</td>
<td>TR 1100-1200</td>
</tr>
</tbody>
</table>

 Course Site:
 D2L: CPSC 359 L01-(Fall 2017)-Computing Machinery II
 Department of Computer Science: ICT 602, 403 220-6015, cpsc@cpsc.ucalgary.ca

2. **Prerequisites:**

 See section 3.5.C in the Faculty of Science section of the online Calendar.

 Computer Science 355 and Philosophy 279 or 377.
 Credit for both Computer Science 359 and any of 325, 455 or Computer Engineering 415 will not be allowed.

3. **Grading:**

 The University policy on grading and related matters is described in F.1 and F.2 of the online University Calendar. In determining the overall grade in the course the following weights will be used:

<table>
<thead>
<tr>
<th>Component(s)</th>
<th>Weighting %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>40</td>
</tr>
<tr>
<td>Test 1 (11-Oct-2017 in class)</td>
<td>20</td>
</tr>
<tr>
<td>Test 2 (8-Nov-2017 in class)</td>
<td>20</td>
</tr>
<tr>
<td>Final Exam (scheduled by registrar)</td>
<td>20</td>
</tr>
</tbody>
</table>

 Each of the above components will be given a letter grade using the official University grading system. The final grade will be calculated using the grade point equivalents weighted by the percentages given above and then converted to a final letter grade using the official University grade point equivalents.

4. **Missed Components of Term Work:**

 The regulations of the Faculty of Science pertaining to this matter are found in the Faculty of Science area of the Calendar in Section 3.6. It is the student's responsibility to familiarize himself/herself with these regulations. See also Section E.3 of the University Calendar

5. **Scheduled out-of-class activities:**

 There are no out-of-class activities scheduled for this course.

6. **Course Materials:**

7. **Examination Policy:**

 No aids are allowed on tests or examinations
 Students should also read the Calendar, Section G, on Examinations.

8. **Approved Mandatory and Optional Course Supplemental Fees:**
9. **Writing across the Curriculum Statement:**

See Section E.2 of the University Calendar.

10. **Human studies statement:**

Students will not participate as subjects or researchers in human studies.

11. **OTHER IMPORTANT INFORMATION FOR STUDENTS:**

 a. **Misconduct:** Academic misconduct (cheating, plagiarism, or any other form) is a very serious offence that will be dealt with rigorously in all cases. A single offence may lead to disciplinary probation or suspension or expulsion. The Faculty of Science follows a zero tolerance policy regarding dishonesty. Please read the sections of the University Calendar under Section K. Student Misconduct to inform yourself of definitions, processes and penalties.

 b. **Assembly Points:** In case of emergency during class time, be sure to FAMILIARIZE YOURSELF with the information on [assembly points](#).

 c. **Academic Accommodation Policy:** Students needing an Accommodation because of a Disability or medical condition should contact Student Accessibility Services in accordance with the Procedure for Accommodations for Students with Disabilities available at [procedure-for-accommodations-for-students-with-disabilities_0.pdf](#).

 Students needing an Accommodation in relation to their coursework or to fulfil requirements for a graduate degree, based on a Protected Ground other than Disability, should communicate this need, preferably in writing, to the Associate Head of Undergraduate Affairs of the Department of Computer Science, Nathaly Verwaal by email nmverwaal@ucalgary.ca or phone 403-220-8485.

 d. **Safewalk:** Campus Security will escort individuals day or night (www.ucalgary.ca/security/safewalk/). Call 403-220-5333 for assistance. Use any campus phone, emergency phone or the yellow phones located at most parking lot pay booths.

 e. **Freedom of Information and Privacy:** This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). As one consequence, students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information, see also www.ucalgary.ca/legalservices/foip.

 f. **Student Union Information:** VP Academic, Phone: 403-220-3911 Email: suvpaca@ucalgary.ca, SU Faculty Rep. Phone: 403-220-3913 Email: sciencerep@su.ucalgary.ca; Student Ombudsman, Email: suvpaca@ucalgary.ca

 g. **Internet and Electronic Device Information:** You can assume that in all classes that you attend, your cell phone should be turned off unless instructed otherwise. Also, communication with other individuals, via laptop computers, Blackberries or other devices connectable to the Internet is not allowed in class time unless specifically permitted by the instructor. If you violate this policy, you may be asked to leave the classroom. Repeated abuse may result in a charge of misconduct.

 h. **Surveys:** At the University of Calgary, feedback through the Universal Student Ratings of Instruction ([USRI](#)) survey and the Faculty of Science Teaching Feedback form provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses. Your responses make a difference - please participate in these Surveys.

 i. **SU Wellness Center:** The Students Union Wellness Centre provides health and wellness support for students including information and counselling on physical health, mental health and nutrition. For more information, see www.ucalgary.ca/wellnesscentre or call 403-210-9355.
Course Outcomes

1. Design and simulate digital computing devices using digital logic.
2. Write low-level programs that control hardware devices using various processor-device communication protocols.
3. Design and implement device drivers.
4. Design and implement interrupt-driven systems.
5. Design a microarchitecture layer by developing a microgram that controls the processor’s data path.