1. **Course**: CPSC 519: Introduction to Quantum Computation
 CPSC 619: Quantum Computation
 Lecture Sections:
 L01, TR 14:00-15:15, SA 121, Peter Hoyer, ICT 653, 210-9468, hoyer@ucalgary.ca
 Office Hours: By Appointment
 Course Website: D2L
 Computer Science Department Office, ICT 602, 220-6015, cpsc@cpsc.ucalgary.ca

2. **Prerequisites**: CPSC 519: CPSC 413 and one of MATH 311 or 313
 CPSC 619: Consent of the Department
 (http://www.ucalgary.ca/pubs/calendar/current/computer-science.html#3620)

3. **Grading**: The University policy on grading and related matters is described in sections F.1 and F.2 of the online University Calendar. In determining the overall grade in the course the following weights will be used:

<table>
<thead>
<tr>
<th>CPSC 519</th>
<th>CPSC 619</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-Assignments 10%</td>
<td>Mini-Assignments 10%</td>
</tr>
<tr>
<td>Assignments 45%</td>
<td>Assignments 45%</td>
</tr>
<tr>
<td>Presentation 10%</td>
<td>Presentation 10%</td>
</tr>
<tr>
<td>Final Exam 35%</td>
<td>Final Exam 35%</td>
</tr>
</tbody>
</table>

 This course will have a Registrar’s Scheduled Final Exam.

 Special Regulations affecting Final grade: The percentages assigned to the four components are the same for the two course offerings. The depth, number of problems, and level of difficulty of the three components Assignment, Presentation and Final Exam, are larger for the CPSC 619 course offering. Percentage grades will be awarded to each component. An overall percentage grade will then be computed, which then will be converted to a letter grade using the included conversions. In order to obtain a final grade of C- or better, a student must achieve a C- or better on the final exam.

4. **Missed Components of Term Work**: The regulations of the Faculty of Science pertaining to this matter are found in the Faculty of Science area of the Calendar. Section 3.6. It is the student’s responsibility to familiarize theirself with these regulations. See also Section E.6 of the University calendar.

5. **Scheduled Out-of-Class Activities**: REGULARLY SCHEDULED CLASSES HAVE PRECEDENCE OVER ANY OUT-OF-CLASS-TIME ACTIVITY. If you have a clash with this out-of-class activity, please inform your instructor as soon as possible so that alternative assignments can be arranged.

6. **Course Materials**:
 Quantum Algorithms via Linear Algebra, Richard J. Lipton & Kenneth W. Regan, MIT Press (Required)
 Online Course Components:
 D2L

7. **Examination Policy**: Open book, books, notes and calculators are permitted. Students should also read the Calendar, Section G, on examinations.

8. **Approved Mandatory and Optional Course Supplemental Fees**: None.
9. **Writing across the Curriculum Statement:** In this course, the quality of the student's writing in the weighted components of the course will be a factor in the evaluation of these components. See also Section E.2 of the University Calendar.

10. **Human Studies Statement:** Students will be expected to participate as subjects or participants in projects. See also Section E.5 of the University Calendar.

11. **OTHER IMPORTANT INFORMATION FOR STUDENTS:**

 a) **Misconduct:** Academic misconduct (cheating, plagiarism, or any other form) is a very serious offense that will be dealt with rigorously in all cases. A single offence may lead to disciplinary probation or suspension or expulsion. The Faculty of Science follows a zero tolerance policy regarding dishonesty. Please read the sections of the University Calendar under Section K, Student Misconduct to inform yourself of definitions, processes and penalties.

 b) **Assembly Points:** In case of emergency during class time, be sure to FAMILIARIZE YOURSELF with the information on assembly points which can be found in each classroom and building.

 c) **Student Accommodations:** Students needing an Accommodation because of a Disability or medical condition should contact Student Accessibility Services in accordance with the Procedure for Accommodations for Students with Disabilities available at http://www.ucalgary.ca/policies/files/policies/procedure-for-accommodations-for-students-with-disabilities_0.pdf. Students needing an Accommodation in relation to their coursework or to fulfill requirements for a graduate degree, based on a Protected Ground other than Disability, should communicate this need, preferably in writing, to the Associate Head of Computer Science.

 d) **Safewalk:** Campus Security will escort individuals day or night (http://www.ucalgary.ca/security/safewalk/). Call 403-220-5333 for assistance. Use any campus phone, emergency phone or the yellow phones located at most parking lot pay booths.

 e) **Freedom of Information and Privacy:** This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). As one consequence, students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information see also http://www.ucalgary.ca/secretariat/privacy

 f) **Student Union Information:** VP Academic (403) 220-3911 suvpaca@ucalgary.ca SU Faculty Rep (403) 220-3913 science1@su.ucalgary.ca, science2@su.ucalgary.ca and science3@su.ucalgary.ca, Student Ombuds Office: (403) 220-6420 ombuds@ucalgary.ca, http://ucalgary.ca/provost/students/ombuds

 g) **Internet and Electronic Device Information:** You can assume that in all classes that you attend your cell phone should be turned off unless instructed otherwise. All communications with other individuals via laptop computers, cell phones or other devices connectable to the internet in not allowed during class time unless specifically permitted by the instructor. If you violate this policy you may be asked to leave the classroom. Repeated abuse may result in a charge of misconduct.

 h) **U.S.R.I.:** At the University of Calgary feedback provided by students through the Universal Student ratings of Instruction (USRI) survey provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses (www.ucalgary.ca/usri). Your responses make a difference – please participate in USRI surveys.

Department Approval__Date__________________________

Associate Dean’s Approval for out of regular class-time activity: ____________________________Date:__________________________

Associate Dean’s Approval for Alternate final examination arrangements: ____________________________Date:__________________________

A signed copy of this document is kept on file in the Computer Science main Office ICT 602
<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>97-100</td>
</tr>
<tr>
<td>A</td>
<td>90-96</td>
</tr>
<tr>
<td>A-</td>
<td>85-89</td>
</tr>
<tr>
<td>B+</td>
<td>80-84</td>
</tr>
<tr>
<td>B</td>
<td>75-79</td>
</tr>
<tr>
<td>B-</td>
<td>70-74</td>
</tr>
<tr>
<td>C+</td>
<td>65-69</td>
</tr>
<tr>
<td>C</td>
<td>61-64</td>
</tr>
<tr>
<td>C-</td>
<td>57-60</td>
</tr>
<tr>
<td>D+</td>
<td>53-56</td>
</tr>
<tr>
<td>D</td>
<td>50-52</td>
</tr>
<tr>
<td>F</td>
<td>0-49</td>
</tr>
</tbody>
</table>
Tentative Topics Covered
- Quantum information
- Quantum algorithms, including Shor’s quantum factoring algorithm and Grover’s quantum search technique
- Quantum error correcting codes
- Quantum cryptography
- Nonlocality and quantum communication complexity
- Quantum computational complexity

Learning Outcomes:
By the end of the course: students will:

- Analyze quantum processes (algorithms, circuits, protocols, and codes) for basic computational problems.
- Apply quantum-mechanical formalisms.
- Develop quantum processes (algorithms, circuits, protocols, and codes) for basic computational problems.
- Prove asymptotically tight bounds on the quantum complexities for basic computational problems.
- Compare and contrast quantum mechanical models to classical and probabilistic models.