REVISED COURSE OUTLINE FOR REMOTE LEARNING

To account for the necessary transition to remote learning from March 13 onward, adjustments have been made to assessment deadlines and requirements so that all coursework tasks are in line with the necessary and evolving health precautions for all involved (students and staff). If you are unable to meet the deadlines or requirements specified, please connect with your course instructor to work out alternative dates/assessments.

1. **Course:** GOPH 419, Computational Methods for Geophysicists - Winter 2020
   
   Lecture 01: MWF 16:00 - 16:50 - Remote Learning (check with your instructor or coordinator for details)

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Email</th>
<th>Phone</th>
<th>Office</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Brandon Karchewski</td>
<td><a href="mailto:brandon.karchewski@ucalgary.ca">brandon.karchewski@ucalgary.ca</a></td>
<td>403 220-6678</td>
<td>ES 108</td>
<td>By Appointment</td>
</tr>
</tbody>
</table>

   **Lab Schedule:**
   B01: W 17:00-19:50, ES 924

   **Course Site:**
   D2L: GOPH 419 L01-(Winter 2020)-Computational Methods for Geophysicists

   **Note:** Students must use their U of C account for all course correspondence.

   **Teaching Assistant:**
   Meghan Sharp, E: meghan.sharp@ucalgary.ca

2. **Requisites:**

   See section 3.5.C in the Faculty of Science section of the online Calendar.

   **Prerequisite(s):**
   Geophysics 351 or 355; Computer Science 217 or 231 or 235 or Data Science 211; Mathematics 211 and 331.

   **Antirequisite(s):**
   Credit for Geophysics 419 and any of 619, 599.09 or 699.09 will not be allowed.

3. **Grading:**

   The University policy on grading and related matters is described in F.1 and F.2 of the online University Calendar. In determining the overall grade in the course the following weights will be used:

<table>
<thead>
<tr>
<th>Component(s)</th>
<th>Weighting %</th>
</tr>
</thead>
<tbody>
<tr>
<td>iRAT/tRAT Quizzes*</td>
<td>20% 35%</td>
</tr>
<tr>
<td>Lab Assignments/Reports*</td>
<td>25% 30%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25% 35%</td>
</tr>
<tr>
<td>Final Exam**</td>
<td>30%</td>
</tr>
</tbody>
</table>

   *Lowest mark will be dropped in assessing these grade components

   **Students must achieve a minimum of 50% on the final exam to obtain a passing grade.

   Each piece of work (reports, assignments, quizzes, midterm exam(s) or final examination) submitted by the student will be assigned a grade. The student's grade for each component listed above will be combined with the indicated weights to produce an overall percentage for the course, which will be used to determine the course letter grade.

   The conversion between a percentage grade and letter grade is as follows.

<table>
<thead>
<tr>
<th>Minimum % Required</th>
<th>A+</th>
<th>A-</th>
<th>B+</th>
<th>B-</th>
<th>C+</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 %</td>
<td>90 %</td>
<td>85 %</td>
<td>80 %</td>
<td>75 %</td>
<td>70 %</td>
<td>67 %</td>
<td>63 %</td>
<td>60 %</td>
</tr>
</tbody>
</table>

   **Format of the course:**
Lectures: The course will involve three (3) weekly lecture periods (3 hours), where the instructor will lead the students through a discussion of the topic for that week. The instructor will post the material for that week at least one week prior. Students are expected to review this content prior to the lectures.

Labs: There will be one (1) weekly lab period (3 hours). In the computer labs, you will complete assignments in which you will implement a numerical solution to a geophysics application problem in Matlab. There will be a total of four (4) lab assignments and you will have 2-3 lab periods to complete each assignment. Your submission of these assignments will include both the code that you used to generate your solution and a brief scientific report summarizing the background theory, methods, results and conclusions of the assignment. In assessing your lab assignment grade, the lowest mark will be dropped.

Quizzes: The lab periods will also involve a team-based learning activity centred on a pair of Readiness Assurance Tests, one individual quiz (iRAT) and one team quiz (tRAT). The content of the quiz will draw from the content from the previous module. The iRAT will be completed individually at the beginning of the lab period and should take approximately 30 minutes. The tRAT will be the same quiz, but you will be able to discuss the questions with a team of your peers. The tRAT should also take approximately 30 minutes.

The teams will be organized at the beginning of the term by your instructor based on the results of a self-scored questionnaire on your level of background knowledge and practical experience relevant to the course content, as well as your attitude toward working in teams.

COVID-19 UPDATE:
Adapting to changing course delivery in online format, and to the classes lost due to the developing COVID response, the grade weighting scheme has been modified (see table above).

Since an online final exam would necessarily have no restrictions on communication, this assessment format would be no different from the format of the lab quizzes, which cover similar topics. As such the 30% weight from the final exam has been distributed as follows: 15% extra weight on quizzes, 5% extra weight on lab assignments and 10% extra weight on the midterms.

The remaining lab quizzes will be given through D2L and everyone will have 2 attempts with the highest attempt being counted for the grade for that quiz. The lowest quiz grade will be dropped in calculating the overall quiz grade. Since the final exam would have given opportunity to respond to similar questions seen on earlier quizzes and the midterm, the instructor may provide additional D2L quizzes on earlier topics, but these will be optional. Whether a particular quiz is required or optional will be clearly communicated.

The remaining labs remain unchanged since all labs are completed using Matlab and reports and code files are submitted electronically through the D2L Dropbox. Lab sessions/demos by the course TA will now be given using Zoom, as with the lecture periods.

Please feel free to contact the course instructor with any questions/comments about the modifications. Individual circumstances can be accommodated in terms of adjustments to deadlines or weights at the instructor’s discretion. The University of Calgary wants to ensure that no student is academically disadvantaged by the COVID response.

4. Missed Components Of Term Work:
The University has suspended requirements for students to provide evidence for reasons for absences so please do not attend medical clinics for medical notes or Commissioners for Oaths for statutory declarations. Please let your instructor know immediately if you are ill and cannot meet the deadlines specified.

5. Scheduled Out-of-Class Activities:
There are no scheduled out of class activities for this course.

6. Course Materials:

Recommended Textbook(s):

This text will be the reference for the content of this course, and it is recommended, but not required. The instructor will post supplemental notes on D2L (https://d2l.ucalgary.ca/login.asp). You will be expected to stay up-to-date with the online content of the course on a weekly basis.

For in-class quizzes and term tests, you may use course notes, online reference and any calculator (including Matlab or Excel). You can obtain a student license for Matlab for your personal computer by visiting the University of Calgary IT Software Distribution website (https://iac01.ucalgary.ca/SDSWeb/) and following the instructions provided.
7. Examination Policy:
The midterm and final exams will be open book, open notes and you will be allowed to use a lab computer or a personal laptop. Internet access will be allowed, but verbal, written or electronic communication is not allowed during the exam. Students should also read the Calendar, Section G, on Examinations.

Students should also read the Calendar, Section G, on Examinations.

8. Approved Mandatory And Optional Course Supplemental Fees:
There are no mandatory or optional course supplemental fees for this course.

9. Writing Across The Curriculum Statement:
For all components of the course, in any written work, the quality of the student's writing (language, spelling, grammar, presentation etc.) can be a factor in the evaluation of the work. See also Section E.2 of the University Calendar.

In this course, the quality of the student’s writing in laboratory reports will be a factor in the evaluation of those reports. See also Section E.2 of the University Calendar.

10. Human Studies Statement:
Students will not participate as subjects or researchers in human studies.

See also Section E.5 of the University Calendar.

11. Reappraisal Of Grades:
A student wishing a reappraisal, should first attempt to review the graded work with the Course coordinator/instructor or department offering the course. Students with sufficient academic grounds may request a reappraisal. Non-academic grounds are not relevant for grade reappraisals. Students should be aware that the grade being reappraised may be raised, lowered or remain the same. See Section I.3 of the University Calendar.

a. Term Work: The student should present their rationale as effectively and as fully as possible to the Course coordinator/instructor within ten business days of either being notified about the mark, or of the item's return to the class. If the student is not satisfied with the outcome, the student shall submit the Reappraisal of Graded Term work form to the department in which the course is offered within 2 business days of receiving the decision from the instructor. The Department will arrange for a reappraisal of the work within the next ten business days. The reappraisal will only be considered if the student provides a detailed rationale that outlines where and for what reason an error is suspected. See sections I.1 and I.2 of the University Calendar.

b. Final Exam: The student shall submit the request to Enrolment Services. See Section I.3 of the University Calendar.

12. Other Important Information For Students:

a. Mental Health The University of Calgary recognizes the pivotal role that student mental health plays in physical health, social connectedness and academic success, and aspires to create a caring and supportive campus community where individuals can freely talk about mental health and receive supports when needed. We encourage you to explore the mental health resources available throughout the university community, such as counselling, self-help resources, peer support or skills-building available through the SU Wellness Centre (Room 370, MacEwan Student Centre, Mental Health Services Website) and the Campus Mental Health Strategy website (Mental Health).

b. SU Wellness Center: The Students Union Wellness Centre provides health and wellness support for students including information and counselling on physical health, mental health and nutrition. For more information, see www.ucalgary.ca/wellnesscentre or call 403-210-9355.

c. Sexual Violence: The University of Calgary is committed to fostering a safe, productive learning environment. The Sexual Violence Policy (https://www.ucalgary.ca/policies/files/policies/sexual-violence-policy.pdf) is a fundamental element in creating and sustaining a safer campus environment for all community members. We understand that sexual violence can undermine students’ academic success and we encourage students who have experienced some form of sexual misconduct to talk to someone about their experience, so they can get the support they need. The Sexual Violence Support Advocate, Carla Bertsch, can provide confidential support and information regarding sexual violence to all members of the university community. Carla can be reached by email (svsa@ucalgary.ca) or phone at 403-220-2208.

d. Misconduct: Academic misconduct (cheating, plagiarism, or any other form) is a very serious offence that will be dealt with rigorously in all cases. A single offence may lead to disciplinary probation or suspension or
expulsion. The Faculty of Science follows a zero tolerance policy regarding dishonesty. Please read the sections of the University Calendar under Section K. Student Misconduct to inform yourself of definitions, processes and penalties. Examples of academic misconduct may include: submitting or presenting work as if it were the student's own work when it is not; submitting or presenting work in one course which has also been submitted in another course without the instructor's permission; collaborating in whole or in part without prior agreement of the instructor; borrowing experimental values from others without the instructor's approval; falsification/ fabrication of experimental values in a report. These are only examples.

e. **Assembly Points:** In case of emergency during class time, be sure to FAMILIARIZE YOURSELF with the information on assembly points.

f. **Academic Accommodation Policy:** Students needing an accommodation because of a disability or medical condition should contact Student Accessibility Services in accordance with the procedure for accommodations for students with disabilities available at procedure-for-accommodations-for-students-with-disabilities.pdf.

Students needing an accommodation in relation to their coursework or to fulfill requirements for a graduate degree, based on a protected ground other than disability, should communicate this need, preferably in writing, to the Sr. Instructor of the Department of Geoscience, Dr. Rudi Meyer by email rmeyer@ucalgary.ca or phone 403-210-7848. Religious accommodation requests relating to class, test or exam scheduling or absences must be submitted no later than 14 days prior to the date in question. See Section E.4 of the University Calendar.

g. **Safewalk:** Campus Security will escort individuals day or night (See the Campus Safewalk website). Call 403-220-5333 for assistance. Use any campus phone, emergency phone or the yellow phones located at most parking lot pay booths.

h. **Freedom of Information and Privacy:** This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). Students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information, see Legal Services website.

i. **Student Union Information:** VP Academic, Phone: 403-220-3911 Email: suvpaca@ucalgary.ca. SU Faculty Rep., Phone: 403-220-3913 Email: sciencerep@su.ucalgary.ca. Student Ombudsman, Email: ombuds@ucalgary.ca.

j. **Internet and Electronic Device Information:** Unless instructed otherwise, cell phones should be turned off during class. All communication with other individuals via laptop, tablet, smart phone or other device is prohibited during class unless specifically permitted by the instructor. Students that violate this policy may be asked to leave the classroom. Repeated violations may result in a charge of misconduct.

k. **Surveys:** At the University of Calgary, feedback through the Universal Student Ratings of Instruction (USRI) survey and the Faculty of Science Teaching Feedback form provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses. Your responses make a difference - please participate in these surveys.

l. **Copyright of Course Materials:** All course materials (including those posted on the course D2L site, a course website, or used in any teaching activity such as (but not limited to) examinations, quizzes, assignments, laboratory manuals, lecture slides or lecture materials and other course notes) are protected by law. These materials are for the sole use of students registered in this course and must not be redistributed. Sharing these materials with anyone else would be a breach of the terms and conditions governing student access to D2L, as well as a violation of the copyright in these materials, and may be pursued as a case of student academic or non-academic misconduct, in addition to any other remedies available at law.

**Calendar Description:**
Topics in numerical analysis emphasizing geophysics applications. Topics will include error analysis, Taylor series, root finding algorithms, linear system solver algorithms, LU decomposition, curve fitting, numerical differentiation and integration, numerical solution of ODEs, introduction to PDE solvers.

**Learning Objectives:**
By the end of this course, students should be able to:

1. **Explain** and **implement** numerical solution algorithms to some of the most fundamental problems in applied mathematics (root finding, solution of linear systems, numerical integration, solution of ODEs/PDEs),
applied within a geophysics context.

2. **Perform** error analyses of approximate numerical solutions and **discuss** whether the solutions are acceptable.

3. **Explain** the advantages and limitations of the numerical techniques examined in the course.

4. **Distinguish** between and **select** the most applicable of available numerical techniques for an analysis task in geophysics.

5. **Use** software packages (spreadsheet tools such as MS Excel and programming languages such as Matlab) to compute numerical solutions.

6. **Communicate** the results of numerical analysis to peers in the scientific community and **critically evaluate** the work of peers.