AMAT 219 PRACTICE SHEET \#10

1. Find the cartesian equation of the tangent line to the plane curve given parametrically by $x(t)=t^{2}+1, y(t)=t^{4}+2 t^{2}+1$, at the point $(1,1)$.
2. Find the cartesian equations of the tangent and normal lines to the cycloid $x(t)=t-\sin (t), y(t)=1-\cos (t)$ at the point corresponding to $t=\frac{\pi}{2}$.
3. Find the arc length of the plane parametric curve $\overrightarrow{r(t)}=\left(\cos ^{3}(t), \sin ^{3}(t)\right.$), $\quad 0 \leq t \leq \frac{\pi}{2}$.
4. Find the cartesian equation of the plane curve given parametrically by $x(t)=2 \cosh (t), y(t)=4 \sinh ^{2}(t), \quad t \in \mathbb{R}$.
5. Find the cartesian equation of the tangent line to the plane curve $\overrightarrow{r(s)}=$ $\left(s^{2}+2 s-6,7-s^{3}\right)$, at the point $(2,-1)$.
6. Determine the arc length of the plane curve given by the vector function $\overrightarrow{r(t)}=\left(t, \frac{2}{3}(t+3)^{3 / 2}\right), \quad 0 \leq t \leq 1$.
7. Determine the point of intersection of the two parametric curves $(x(t), y(t))=$ $\left(2 t, 3 t^{2}+4\right)$ and $(x(s), y(s))=\left(s, s^{2}\right)$.
8. The position vector of a particle moving in space is given by $\overrightarrow{r(t)}=$ $\left(t^{2}+2 t-8\right) \vec{i}+\left(\frac{1}{2} t^{2}-1\right) \vec{j}-\sqrt{2} t^{3 / 2} \vec{k}$. Find the velocity, acceleration, and the speed of the particle at the point $(0,1,-4)$.
9. The position of a particle at time t (in seconds) is given by $(x(t), y(t)$, $z(t))=\left(\frac{1}{3} t^{3}-3 t, \frac{1}{2} t^{2}, 2 t+7\right)$ where x, y, and z are measured in meters. When will the speed of the particle be $3 \mathrm{~m} / \mathrm{s}$?
10. Find the cartesian equation of the plane curve given parametrically by $(x(t), y(t))=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right), t \in[-1,1]$. Identify the curve and sketch indicating the orientation.
11. Find the arc length of the space curve given parametrically by $x(t)=1$, $y(t)=2 t-\sin (2 t), z(t)=1-\cos (2 t), \quad 0 \leq t \leq \pi$
12. A conic section is given parametrically by $x(t)=-1+4 \sec (t), \quad y(t)=$ $6-3 \tan (t), \quad t \in\left[0, \frac{\pi}{2}\right)$. Name the curve and sketch.
13. Name the conic section defined by the vector function $\overrightarrow{r(t)}=(1+$ $2 \sin (t),-6+2 \cos (t)), t \in[0,2 \pi]$.
14. Find the arc length of the space curve given by $\overrightarrow{r(t)}=\left(\frac{1}{3} t^{3}, t^{2}, 2 t\right)$, $0 \leq t \leq 3$.

15 The position vector of a particle is given by $\overrightarrow{r(t)}=4 \sqrt{t} \vec{i}+9 \vec{j}+t^{2} \vec{k}$. Determine the speed of particle at $t=2$.
16. Find the cartesian equation of the tangent line to the parametric curve given by $\overrightarrow{r(t)}=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$ at the point corresponding to $t=\frac{\pi}{2}$.
17. Find the arc length of the space curve given by $x(t)=e^{-4 t} \cos (2 t)$, $y(t)=e^{-4 t} \sin (2 t), z(t)=e^{-4 t}, 0 \leq t \leq \frac{\ln 2}{4}$.
18. The position vector of a moving particle is given by $\overrightarrow{r(t)}=\left(t^{2}-1\right) \vec{i}+$ $\sqrt{3} t \vec{j}+\left(t^{2}+t\right) \vec{k}$. At what times is the speed of particle equal to 4 ?
19. Find the cartesian equation of the conic section given parametrically by $x(t)=3+2 \cos (t), y(t)=\frac{1}{5} \sin (t), \quad t \in[0,2 \pi]$.
20. Find the area of the surface generated by revolving the arc of the parametric curve $x(t)=2 t^{3}, \quad y(t)=3 t^{2}, \quad 0 \leq t \leq 1 \quad$ about the $x-a x i s$.

ANSWERS

1. $y=2 x-1$
2. Tangent line: $y=x-\frac{\pi}{2}+2$, Normal line : $y=-x+\frac{\pi}{2}$
3. $\frac{3}{2}$
4. $y=x^{2}-4, x \geq 2$.
5. $y=-2 x+3$
6. $\frac{2}{3}(5 \sqrt{5}-8)$
7. (± 4, 16)
8. Velocity $\vec{v}=(6,2,-3)$, Acceleration $\vec{a}=\left(2,1,-\frac{3}{4}\right)$, Speed $=7$
9. $t= \pm 1, \pm 2$.
10. $x^{2}+y^{2}=1,0 \leq x \leq 1 \quad$ (Right semi circle),
11. 8
12. $\frac{(x+1)^{2}}{16}-\frac{(y-6)^{2}}{9}=1$, the part of the hyperbola centred at $(-1,6)$, such that $x \in[3, \infty), y \in(-\infty, 6]$.
13. The full circle centred at the point $(1,-6)$ and has radius 2 units.
14. 15
15. $3 \sqrt{2}$
16. $y=-x+e^{\pi / 2}$
17. $\frac{3}{4}$
18. $t=-\frac{3}{2}$ or 1
$19 \frac{(x-3)^{2}}{2^{2}}+\frac{y^{2}}{(1 / 5)^{2}}=1 \quad$ (An ellipse)
19. $\frac{12}{5}(\sqrt{2}+1)$. Hint: Use the substitution $u^{2}=t^{2}+1$.
