AMAT 219 PRACTICE SHEET \#4

1. In each case find the value of Trapezoidal Rule, Midpoint Rule, and Simpson's Rule estimate for
the given integral and the specified value of n.
(a) $\int_{0}^{1} \frac{1}{1+x^{2}} d x, \quad n=6$.
(b) $\int_{0}^{1} \cos \left(x^{2}\right) d x, \quad n=6$
(c) $\int_{1}^{7} \frac{1}{x+1} d x, \quad n=6$
2. Refer to problem $\# 1$, find the values of T_{12} and S_{12}.
3. Refer to problem \#1 part (a), find an estimate for the value of π obtained from each
of the three rules (round your answers to four decimal places).
4. Refer to problem \#1 part (c), find an estimate for the value of $\ln (2)$ obtained from each
of the three rules (round your answers to six decimal places).
5. Refer to problem \#1part (c).Find an estimate for the absolute value of the Error involved in
approximating the integral using:
(i) T_{6}
(ii) M_{6}
(iii) S_{6}
6. Find the value of the Simpson's Rule estimate S_{n} for $\int_{0}^{2}\left(3 x^{2}-4 x+2\right)$ $d x$,
where n is an arbitrary even positive integer.
7. Use the Trapezoidal Rule and the data in the following table to estimate the value of $\int_{14}^{21} y(t) d t$.

t	14	15	16	17	18	19	20	21
y	-6	-4	-2	0	2	4	6	8

8. How large should we take n in order to guarantee that the Trapezoidal Rule approximation for

$$
\int_{1}^{3} \frac{1}{x} d x \text { is accurate to within } 0.03 ?
$$

9. How large should we take n in order to guarantee that the Simpson's Rule estimate for

$$
\int_{1}^{4} \frac{1}{x} d x \text { is accurate to within } 0.00064 ?
$$

ANSWERS

1.(a) $T_{6}=0.784240767 \quad, \quad M_{6}=0.785976857 \quad, \quad S_{6}=0.785397945$
(b) $T_{6}=0.900628388 \quad, \quad M_{6}=0.906472209 \quad, \quad S_{6}=0.904522925$
(c) $T_{6}=1.405357143 \quad, \quad M_{6}=1.376934177 \quad, \quad S_{6}=1.387698413$
2.(a) $T_{12}=0.785108812 \quad, \quad S_{12}=0.785398160$
(b) $T_{12}=0.903550299 \quad, \quad S_{12}=0.904524269$
(c) $T_{12}=1.391145660 \quad, \quad S_{12}=1.386408499$
3. Using Trapezoidal Rule T_{6}, we find $\pi \cong 3.1370$

Using Midpoint Rule M_{6}, we find $\pi \cong 3.1439$
Using Simpson's Rule S_{6}, we find $\pi \cong 3.1416$
4. Using Trapezoidal rule T_{6}, we find $\ln (2) \cong 0.702679$

Using Midpoint Rule M_{6}, we find $\ln (2) \cong 0.688467$
Using Simpson's Rule S_{6}, we find $\ln (2) \cong 0.693849$
5. (i) $E_{6} \leq 0.125 \quad$ (ii) $E_{6} \leq 0.0625 \quad$ (iii) $E_{6} \leq 0.025$
6. $S_{n}=4$
7. $T_{7}=7$
8. $n=7$
9. $n=16$

Hints

1. (b) Calculator should be in radian mode!
2. Use relations : $T_{2 n}=\frac{T_{n}+M_{n}}{2}, S_{2 n}=\frac{T_{n}+2 M_{n}}{3}$ with $n=6$.
3. Verify that $\int_{0}^{1} \frac{1}{x^{2}+1} d x=\frac{\pi}{4}$ and hence $4 T_{6}$ or $4 M_{6}$ or $4 S_{6}$ are the required estimates of π.
4. Verify that $\int_{1}^{7} \frac{1}{x+1} d x=2 \ln (2)$ and hence $\frac{1}{2} T_{6}$ or $\frac{1}{2} M_{6}$ or $\frac{1}{2} S_{6}$ are the required estimates of $\ln (2)$.
5. The function $\frac{1}{(x+1)^{r}}$ is strictly decreasing on $[1,7]$ for $r=1,2,3, \ldots$ and hence its absolute maximum value say " k " occurs at $x=1$.

6 . Note that the integrand is a polynomial of degree two!

