# AMAT 307 <br> DEs for Engineers <br> <br> AMAT 307 Module 2 : Linear Differential <br> <br> AMAT 307 Module 2 : Linear Differential Equations 

 Equations}

Courtesy: Dr. P. Zvengrowski

Outline
$\Rightarrow$ Algebra
$\Rightarrow$ Terminology
$\Rightarrow$ Superposition Principle
$\Rightarrow$ Linear Independence of Functions
$\Rightarrow$ Constant Coefficients
$\Rightarrow$ Exponential Shift Formula
$\Rightarrow$ Applications
$\Rightarrow$ Particular Solution, Undetermined Coefficients
$\Rightarrow$ Particular Solution, Variation of Parameters
$\Rightarrow$ Cauchy-Euler Type

## 1 Algebra:

Useful to recall determinants and methods to find roots (zeros) of polynomials, e.g. factorization of polynomials.

- If $a$ is a root of a polynomial $p(\lambda)$, then $\lambda-a$ is a factor. The remaining factor can be found by long division, or (more quickly) synthetic division.
- For any polynomial $p(\lambda)=a_{n} \lambda^{n}+\ldots+a_{1} \lambda+a_{0}$, assuming $a_{j}$ are real, complex roots occur in conjugate pairs $x \pm i y$.
- For $p(\lambda)$ as above, assuming all $a_{j}$ are integers, then any rational root $s / t$ ( $s, t$ integers) satisfies: $s$ divides $a_{0}, t$ divides $a_{n}$.


## 2 Terminology:

Linear DE of order $n$ has form $a_{n}(t) D^{n} y+\ldots+a_{1}(t) D y+a_{0}(t) y=g(t)$, for short write $L(D)=a_{n}(t) D^{n}+\ldots+a_{1}(t) D+a_{0}(t)$, then $L(D) y=g(t)$ is shorthand (operator) notation for the DE. If $g(t)=0$, the DE is called homogeneous. If each function $a_{j}(t)=a_{j}$, a constant, we say the DE has constant coefficients and write $L(D)=p(D)=a_{n} D^{n}+\ldots+a_{1} D+a_{0}$, a polynomial in $D$. The polynomial $p(\lambda)=a_{n} \lambda^{n}+\ldots+a_{1} \lambda+a_{0}$ is then called the characteristic polynomial of the DE .

## 3 Superposition Principle:

(1) If $y_{1}, y_{2}$ are solutions of the homogeneous $\operatorname{DE} L(D) y=0$, then so is $y=A y_{1}+B y_{2}$ a solution.
(2) If $y_{c}$ is any solution of $L(D) y=0$ and $y_{p}$ any solution of $L(D)=g(t)$, then $y=y_{c}+y_{p}$ is a solution of $L(D) y=g(t)$.
(3) Strategy for finding the general solution of $L(D) y=g(t)$ is to find the general solution $y_{c}$ for $L(D) y=0$ (with $n$ arbitrary constants), then find any particular solution $y_{p}$ for $L(D) y_{p}=g(t)$, and finally take $y=y_{c}+y_{p}$ as the general solution for $L(D) y=g(t)$.

## 4 Linear Independence of Functions:

The Wronskian $W\left(f_{1}, \ldots, f_{n}\right)=W(t)$ is the $n \times n$ determinant having first row $f_{1}(t), \ldots, f_{n}(t)$, second row $f_{1}^{\prime}(t), \ldots, f_{n}^{\prime}(t)$, etc. If $W(t) \neq 0$ (for any value of $t$ ) then $f_{1}, \ldots, f_{n}$ are linearly independent. For functions $f_{1}, \ldots, f_{n}$ arising as solutions of an $n^{\prime} t h$ order linear homogeneous DE, they are linearly independent iff $W(t) \neq 0$. In that case $\left\{f_{1}, \ldots, f_{n}\right\}$ is called a fundamental set of solutions.

Abel's Theorem can often simplify the calculation of Wronskians. If $\left\{f_{1}, \ldots, f_{n}\right\}$ is a fundamental solution set of the DE $1 \cdot D^{n} y+p_{n-1} D^{n-1} y+$ $\cdots+p_{1}(t) D y+p_{0}(t) y=0$, each $p_{j}(t)$ continuous on an interval $a<t<b$, then their Wronskian is given by

$$
W(t)=W\left(t_{0}\right) e^{-\int_{t_{0}}^{t} p_{n-1}(s)} d s
$$

## 5 Constant Coefficients:

For $L(D)=p(D)=a_{n} D^{n}+\ldots+a_{1} D+a_{0}$, to solve $p(D) y=0$, find the roots of the characteristic equation $p(\lambda)=0$. For each root $\lambda_{i}, e^{\lambda_{i} t}$ is a solution. By superposition $y=\sum c_{i} e^{\lambda_{i} t}$ is a solution. If all roots are distinct ( $n$ roots) this is the general solution. If some root is repeated, e.g., $\lambda_{1}, \lambda_{1}, \lambda_{1}$, then $c_{1} e^{\lambda_{1} t}+c_{2} t e^{\lambda_{1} t}+c_{3} t^{2} e^{\lambda_{1} t}$ is a solution $\Rightarrow$ general solution. For a complex conjugate pair $a \pm b i, c_{1} e^{a t} \cos b t+c_{2} e^{a t} \sin b t$ is a solution.

## 6 Exponential Shift Formula:

Useful theoretical tool

$$
L(D)\left(e^{\lambda t} y\right)=e^{\lambda t} L(D+\lambda) y
$$

## 7 Applications:

Vibrating spring with friction $\quad m y^{\prime \prime}+\gamma y^{\prime}+k y=F_{a}(t)$
LRC electrical circuit $\quad L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=V_{s}(t)$
Mathematically these applications are equivalent to the DE $y^{\prime \prime}+a y^{\prime}+b y=$ $g(t)$, where $a \geq 0, \quad b>0$. The general behaviour of the solutions (for the homogeneous case $g(t)=0$ ) depends on the discriminant $\Delta=a^{2}-4 b$. If $\Delta>0$ we have the overdamped case $=$ exponential decay, if $\Delta=0$ the critically damped case $=$ temporary growth followed by exponential decay, and $\Delta<0$ the underdamped case $=$ oscillations.

## 8 Particular Solution, Undetermined Coefficients

Applicable only for constant coefficients linear DE $p(D) y=g(t)$, when $g(t)$ is formed from sums of products of functions $t^{n}(n \geq 0), e^{a t}, \sin b t, \cos b t$.

1) find $y_{c}$, i.e., solve $P(D) y=0, n$ arbitrary constants,
2) set up test $y_{p}$ based on the terms in $g(t), g^{\prime}(t), g^{\prime \prime}(t), \ldots$,

3 ) if any terms in test $y_{p}$ are part of $y_{p}$, multiply the affected terms (and only these terms) by the least $t^{m}$ that eliminates this overlap,
4) substitute $y_{p}$ into the DE , compare like terms to find the unknown constants in $y_{p}$.

## 9 Particular Solution, Variation of Parameters:

A very general method
$L(D) y=g(t)$, where $L(D)$ is any linear differential operator and $g(t)$ any function

1) Make sure DE in standard form $L(D)=1 \times D^{n}+\ldots+a_{1}(t) D+a_{0}(t)$, solve for $y_{c}$,
2) Write (taking $n=3$ as example) $y_{c}=c_{1} h_{1}(t)+c_{2} h_{2}(t)+c_{3} h_{3}(t)$,
3) let $y_{p}=u_{1}(t) h_{1}(t)+u_{2}(t) h_{2}(t)+u_{3}(t) h_{3}(t)$,
4) solve for $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$ from the equations

$$
\left\{\begin{array}{l}
h_{1} u_{1}^{\prime}+h_{2} u_{2}^{\prime}+h_{3} u_{3}^{\prime}=0 \\
h_{1}^{\prime} u_{1}^{\prime}+h_{2}^{\prime} u_{2}^{\prime}+h_{3}^{\prime} u_{3}^{\prime}=0 \\
h_{1}^{\prime \prime} u_{1}^{\prime}+h_{2}^{\prime \prime} u_{2}^{\prime}+h_{3}^{\prime \prime} u_{3}^{\prime}=g(t),
\end{array}\right.
$$

5) integrate to get $u_{1}, u_{2}, u_{3}$, then substitute back into 3 ).

## 10 Cauchy-Euler Type:

$L(D)=t^{n} \times D^{n}+a_{n-1} t^{n-1} D^{n-1}+\ldots+a_{1} t D+a_{0}$. Can solve $L(D)=0$ using $y=t^{r}$ as test solution. For $n=2$, say $L(D)=t^{2} D^{2}+a t D+b$, the (quadratic) equation for $r$ is $r^{2}+(a-1) r+b=0$. If repeated roots $r_{1}, r_{1}$, get $y_{c}=A t^{r_{1}}+$ $B t^{r_{1}} \ln t$. If complex roots $r=c \pm d i$, get $y_{c}=A t^{c} \cos (d \ln t)+B t^{c} \sin (d \ln t)$. For $y_{p}$ use variation of parameters, and do not forget to first divide the DE by $t^{n}$.

