AMAT 307 DEs for Engineers Review Module: Laplace Transform

Courtesy: Dr. P. Zvengrowski

Outline

\Rightarrow Preliminaries

\Rightarrow Laplace Transform

\Rightarrow Initial Value Problems

The Laplace Transform (LT) gives an alternative approach to solving IVPs of the type

$$
L(D)(y)=g(t)
$$

where $L(D)$ a linear operator with constant coefficients. It proceeds directly to the specific solution without first going to the general solution. It applies to continuous or even piecewise continuous $g(t)$ and is advantageous for such functions, e.g. pulse, sawtooth, etc.

1 Preliminaries

Partial fractions - know a few useful shortcuts, for example, in

$$
\frac{2 s+1}{(s-2)(s-3)}=\frac{A}{s-2}+\frac{B}{s-3},
$$

one has

$$
A=\frac{2 \times 2-1}{2-3}=-5, \quad B=\frac{2 \times 3+1}{3-2}=7 .
$$

Know the general form, for example,

$$
\frac{s^{3}+s+1}{(s-3)(s-5)^{2}\left(s^{2}+s+2\right)}=\frac{A}{s-3}+\frac{B}{s-5}+\frac{C}{(s-5)^{2}}+\frac{D}{(s-5)^{3}}+\frac{E s+F}{s^{2}+s+2} .
$$

Functions - understand meaning of function and how to shift. For example, if $f(t)=3 t+1$, then $f(t+2)=3(t+2)+1=3 t+7$. If $f(t)=e^{-t}$, then $f(t+2)=e^{-(t+2)}=e^{-2} e^{-t}$. If $f(t)=5$, then $f(t+2)=5$.

Step functions-

$$
u_{a}(t)= \begin{cases}0, & t<a \\ 1, & t \geq a\end{cases}
$$

is the basic Heaviside step function. Also very useful are

$$
1-u_{a}(t)= \begin{cases}1, & t<a \\ 0, & t \geq a\end{cases}
$$

and for $a<b$ the "single unit pulse" function

$$
u_{a}(t)-u_{b}(t)= \begin{cases}1, & a \leq t<b \\ 0, & \text { otherwise }\end{cases}
$$

These can be used to write any piecewise defined function.

2 Laplace Transform

Know the definition

$$
\mathcal{L}[f(t)](s):=F(s):=\int_{0}^{+\infty} e^{-s t} f(t) d t, \quad \mathcal{L}^{-1}[F(s)](t)=f(t)
$$

Basic property is linearity, and be familiar with some basic transforms:

$f(t)$	1	$e^{\lambda t}$	$\cos b t$	$\sin b t$	t^{n}	$u_{a}(t)$
$F(s)$	$1 / s$	$1 /(s-\lambda)$	$s /\left(s^{2}+b^{2}\right)$	$b /\left(s^{2}+b^{2}\right)$	$n!/ s^{n+1}$	$e^{-a s} / s$

There are also convergence conditions. Tables of \mathcal{L} usually given.

3 Initial Value Problems

First take \mathcal{L} of both sides, using 1'st differentiation formula (below) and rules for \mathcal{L} to get $\mathcal{L}[g(t)]$. Then solve for $\mathcal{L}[y]$, simplify with partial fractions where needed. Finally, take \mathcal{L}^{-1} to get y. Useful rules in these procedures (also given usually with tables):
1'st diff : $\mathcal{L}\left[D^{n} y\right]=s^{n} \mathcal{L}[y]-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-s^{n-3} y^{\prime \prime}(0)-\ldots$
1'st \quad shift : $\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a), \quad \mathcal{L}^{-1} F(s-a)=e^{a t} f(t)$
2^{\prime} nd \quad diff : $\mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} D^{n} F(s), \quad \mathcal{L}^{-1} D^{n} F(s)=(-1)^{n} \mathcal{L}\left[t^{n} f(t)\right]$
2^{\prime} nd \quad shift : $\mathcal{L}\left[u_{a}(t) f(t)\right]=e^{-a s} \mathcal{L}[f(t+a)], \quad \mathcal{L}^{-1}\left[e^{-a s} F(s)\right]=u_{a}(t) f(t-a)$ convolution : $(f * g)(t)=\int_{0}^{t} f(t-u) g(u) d u$ - linear in f and in g, and $f * g=g * f, \quad(f * g) * h=f *(g * h)$.

Convolution is useful because

$$
\mathcal{L}[(f * g)(t)]=F(s) G(s), \quad \text { or equivalently } \quad \mathcal{L}^{-1}(F G)=f * g .
$$

For IVP at $t=a$, change of variable $\tau=t-a$, reduces it to $\tau=0$.

