MATH 205 Winter 2005 ANSWERS TO REVIEW

1. A proof, done in lectures and in the April 20 Review
2. A proof, done in the April 20 Review.
3. All are rational numbers except $\pi, \sqrt{8}, 6.3030030003 \ldots$
4. MAPLE - no comments needed
5. Historical - Use History Module as basic reference
6. Next numbers are : 20 (base 6 sequence)), 22 (base 7 sequence), 99 $(=2 \times 41+17), 2(\pi)$
7. 5314, 23324
8. $9,10,2,4$
9. Writing horizontally instead of vertically • • • • • -
10. 59611
11. $256455_{(8)}, 15 d 2 d_{(16)}$
12. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / 2$ (same as \mathbb{Z}_{2}), $\mathbb{Z} / 3$ (same as \mathbb{Z}_{3}).
13. 13
14. Only solution is $x=8, y=11$
15. 1
16. First equation : solution is $x=-1 / 15$, can omit the quadratics
17. The first is a line with y-intercept $6, x$-intercept 2 . The second is a parabola with x-intercepts $-5,2$, and y-intercept -10 .
18. Can omit this one
19. Taking $x=-2$ gives a counterexample. Explanation was given in Review.
20. Can omit
21. $P\left(A^{\prime}\right)=1-.7=.3 \quad$ (here $A^{\prime}=A^{c}$, the complementary event to A)
22. $4 / 36=1 / 9$
23. (a) $4 / 16=1 / 4 \quad$ (b) $1-(1 / 16)=15 / 16$
24. (a) $E=18$ (b) Yes (c) No
25. Euler path should start at A and end at C (or vice versa), many solutions are possible. There are also many Hamilton cycles, one such is $A E C F D B A$.
26. (a) This will be true for all primes p, in fact it is Fermat's Theorem.
(b) This is false whenever n is not prime, a couple of trials will soon yield a counterexample (e.g. let $n=4, x=2$).
27. In order : Mt. McKinley (Alaska, USA), Mt. Logan (Yukon, Canada), Pico de Orizaba (Mexico)
From the questions on p. 2 we will only give the solution to Question 5 here (all were done at the Review)
28. (p. $2-5$) The graph meets the x-axis at $x=-2,0,3$, so at three points (roots). Sketch not given here. Not every cubic meets the x-axis three times, one time and two times are also possible, and these are the only possibilities.
