MATH 205 L01 W 2004 MIDTERM 50 Minutes

NAME: \qquad
ID: \qquad

1. Each of the following numbers is composite. For each one, find a factor (you do not have to factor the number completely).
(a) $6,111,003$
(b) $6,111,005$
(c) $7,121,829$
(d) $2^{35}-1$
(e) $2^{2^{5}}+1$ [Hint : remember Euler]
2. For each of the following answer True or False.
(a) The difference of two natural numbers is always an integer.
(b) The difference of two integers is always a natural number. \qquad
(c) In the modular system \mathbb{Z} / n, subtraction is always possible.
(d) In the modular system \mathbb{Z} / n, division is always possible.
(e) The Fundamental Theorem of Arithmetic states that for any two natural numbers m, n, there exist integers $q \geq 0,0 \leq r<m$ such that $n=q m+r$.
(f) All numbers $2^{p}-1$, where p is prime, are themselves prime.
(g) All numbers $2^{2^{n}}+1, \quad n \geq 0$, are prime.
(h) The first known proof that there are infintely many prime numbers is due to Euclid.
(i) The Mayan number system uses only three symbols.
(j) Canada has three mathematics institutes.
3. Consider the sequence $F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3$, $F_{5}=5, \ldots$.
(a) Write out the next 7 terms of this sequence.

$$
F_{6}=\longrightarrow, F_{7}=\longrightarrow, F_{8}=\longrightarrow, F_{9}=\square, F_{11}=\longrightarrow, ~
$$

(b) This famous sequence is named the sequence.
(c) Using inductive reasoning and the values F_{0}, \ldots, F_{12} as above, make a plausible statment about when F_{n} is even, i.e. for which values of n will F_{n} be even.
(d) Prove your statement in (c), using deductive reasoning.
4. (a) Find $\operatorname{gcd}(42,303)$ by factoring the two numbers.
(b) Find $\operatorname{gcd}(4403,2686)$ by any method you wish.
(b) Find 4^{-1}.
(c) Solve the equation $4 x+7=2$.
6. Carry out the Mayan addition:

