Mathematical Induction

Two Proofs

1. Theorem: If \mathcal{G} is a finite tree, then $V_{\mathcal{G}}-E_{\mathcal{G}}=1$.

Proof by mathematical induction: We use induction on $V_{\mathcal{G}}$. Let \mathcal{P}_{n} be the statement that for any tree \mathcal{G} with $V_{\mathcal{G}}=n, \quad V_{\mathcal{G}}-E_{\mathcal{G}}=1, \quad n \geq 1$.
(a) $\quad \mathcal{P}_{1}:$ If $n=1$ then the graph \mathcal{G} consists of just a single vertex with no edges. In that case $V_{\mathcal{G}}-E_{\mathcal{G}}=1-0=1$.
(b) $\quad \mathcal{P}_{n} \Rightarrow \mathcal{P}_{n+1}$. To prove this let \mathcal{G} have $n+1$ vertices. Since this graph is a finite tree there must be at least one vertex a with a single neighbour b (because any path in a tree cannot double back to a previous vertex, so must ultimately end since the tree is finite). Form a new graph \mathcal{H} by deleting the vertex a and deleting all of the edge $a b$ except for keeping b. Then \mathcal{H} is still connected so also a tree, and it has one less vertex as well as one less edge compared to \mathcal{G}.
By \mathcal{P}_{n}, one has $V_{\mathcal{H}}-E_{\mathcal{H}}=1$. It follows that
$V_{\mathcal{G}}-E_{\mathcal{G}}=\left(V_{\mathcal{H}}+1\right)-\left(E_{\mathcal{H}}+1\right)=V_{\mathcal{H}}-E_{\mathcal{H}}+1-1=1+1-1=1$.
This proves \mathcal{P}_{n+1}.
2. Theorem : The sum of a geometric progression is given by

$$
a+a r+a r^{2}+\ldots+a r^{n}=a \cdot \frac{r^{n+1}-1}{r-1}
$$

Proof by mathematical induction : Let \mathcal{P}_{n} be the above formula, for $n \geq 0$.
(a) \mathcal{P}_{0} : The LHS (left hand side) equals a. The RHS equals $a \cdot \frac{r^{1}-1}{r-1}=a \cdot \frac{r-1}{r-1}=a=$ LHS.
(b) $\mathcal{P}_{n} \Rightarrow \mathcal{P}_{n+1}$.
$a+a r+a r^{2}+\ldots+a r^{n}+a r^{n+1}=\left(a+a r+a r^{2}+\ldots+a r^{n}\right)+a r^{n+1}$
(associative law)
$=a \cdot \frac{r^{n+1}-1}{r-1}+a r^{n+1}=a \cdot\left(\frac{r^{n+1}-1}{r-1}+r^{n+1}\right) \quad\left(\right.$ by $\left.\mathcal{P}_{n}\right)$
$=a \cdot\left(\frac{r^{n+1}-1+r^{n+2}-r^{n+1}}{r-1}\right) \quad$ (common denominator)
$=a \cdot \frac{r^{n+2}-1}{r-1}$.
(simplification)
This proves \mathcal{P}_{n+1}, thus completing the mathematical induction.

