MATH 205 L01 W 2006 MAPLE ASSIGNMENT

1. Evaluate $376^{25}+4 \times 25^{41}$
2. (a) Evaluate $1 / 53$ to 150 digits.
(b) Is this a repeating decimal, and if so what is its period?
3. (a) Evaluate π to 10 digits (e.g. to 5 digits it equals 3.1416)
(b) Evaluate π to 100 digits.
(c) What is the 100th digit of π ?
4. Find $\operatorname{gcd}(41447368471823,769250900212) \quad$ (Ans. $=10,061)$
5. Plot $y=x^{2}(x-5)^{2}, \quad-2 \leq x \leq 7$.
6. (a) Convert 56670821 to base 7.
(b) Convert 56670821 to a Mayan number.
7. (a) Factor 8731448005663793693.
(b) Show $2^{101}-1$ is not prime.
(c) Show $2^{4253}-1$ is prime (in 1961 it held the record as the largest known prime).
8. (a) Find the 200,000 th prime number.
(b) Find the first prime number larger than 1,000,000.
9. (a) Find $F_{4}=2^{2^{4}}+1$, the 4 th Fermat number, and determine whether it is prime, factors, or unknown.
(b) Same for F_{5}.
(c) Same for F_{9}.
(d) Same for F_{15} (do not print the number itself, it is so large it takes pages to print).
10. (a) Solve $x^{3}-6 x^{2}-7 x+58=0$, using the "fsolve" command.
(b) Same using "solve" followed by "evalf(\%)."
(c) The answers in (a) and (b) are not the same - those in (a) are real numbers while those in (b) are complex (involve $I=\sqrt{-1}$). Explain how this is possible.
