MATH 205

Our goal in this example is to solve the Diophantine equation $89 x+$ $109 y=2000$ with positive integers.

1. Euclidean Algorithm

$$
\begin{array}{rr}
\frac{1}{89)} \begin{aligned}
& \frac{1}{109} \\
& \frac{89}{20} \\
& \frac{4}{89} \\
& \frac{80}{9} \\
& \frac{2}{20} \\
& \frac{18}{2} \\
& \frac{4}{9} \\
& \frac{8}{1}
\end{aligned}
\end{array}
$$

2. Now comes the Z-process. Notice that the first row is formed from the quotients in the Euclidean algorithm process, from last (bottom) to first (top). The second row starts with 0,1 , then successively multiply and add, e.g. $9=2 \times 4+1, \quad 40=4 \times 9+4$, etc.

		4	2	4	1
0	1	4	9	40	49
-	+	-	+	-	+

3. We now know, from (2.), that $49 \times 89+(-40) \times 109=1$. Multiplying this by 2000 gives

$$
\begin{gathered}
98000 \times 89+(-80000) \times 109=2000 \\
(98000-109 s) \times 89+(-80000+89 s) \times 109=2000 .
\end{gathered}
$$

By long division we find $98000=109 \times 899+9$. This means that we should take $s=899$. Substituting this value for s gives the solution $89 \times 9+109 \times 11=2000$, which is the desired solution. We remark that in this particular example there was a unique solution in positive integers, but this need not always be the case - there may be no solution or more than one (in positive integers) in general.

