MATH 211 ASSIGNMENT 5

Fall 2008

All problems, unless otherwise noted, taken from textbook : D. Lay, Linear Algebra and its Applications. Answers to True-False questions at bottom.

1. Section 4.9 : $1,4,5,7,9$
2. Section 5.1: 24, 25,26,27,29
3. Section 5.2 : 23,24
4. Section 5.3 : 21c, d, 22
5. Section 5.5 : 3,4,5
6. A few more true-false - here A, P are $n \times n$ and P is invertible.
(1) A and A^{T} have the same eigenvalues.
(2) A and A^{T} have the same eigenvectors.
(3) If \mathbf{x} is an eigenvector of A, then it is also an eigenvector of A^{2}.
(4) If \mathbf{x} is an eigenvector of A, then it is also an eigenvector of A^{-1}.
(5) If \mathbf{x}, \mathbf{y} are both eigenvectors of A, then so is $\mathbf{x}+\mathbf{y}$.
(6) If A is 4×4 and has eigenvalues $3,-2,4-i, 4+i$ then A is not symmetric.
(7) If A is symmetric then it is diagonalizable.
(8) If A is diagonalizable then it is symmetric.
(9) If A has no repeated eigenvalues then it is diagonalizable.
(10) If A has a multiple (repeated) eigenvalue then it is not diagonalizable.
(11) A and $P^{-1} A P$ have the same eigenvalues.
(12) A and $P^{-1} A P$ have the same eigenvectors.

Answers
5.3 21d : F
5.3 22: FFTF

Extras: TFT TFT TFT FTF

