MATH 211 MAPLE ASSIGNMENT

Detailed instructions for completing this assignment will be given on a separate sheet called MAPLETIPS, and using these the assignment should take an hour or less. Only stapled assignments will be accepted, non-stapled assignments go into the garbage. Page numbers refer to the text "Linear Algebra and its Applications" by D. Lay, 3rd Edition.

ASSIGNMENT

1. Your name on top of first page, and ID number on top of second page.
2. (a) Find e and π to 100 digits.
(b) Determine the 100 th digit of π (the 1 st is 3,2 nd 1,3 rd 4 , etc.)
3. Find, to 30 digit accuracy, the zeros (roots) of the polynomial $p(x)=$ $x^{3}-7 x^{2}+5 x-12$.

In the following questions consider the matrices

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
1 & -2 & 2 & 3 & 0 & 4 \\
4 & 4 & -1 & 7 & 2 & -5 \\
2 & 3 & 5 & 9 & 1 & 2 \\
0 & 2 & 3 & 9 & 3 & 1 \\
7 & -6 & 0 & 15 & 4 & 6
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
-2 & -1 & 3 & 0 & 4 \\
-4 & 1 & 2 & 5 & -1 \\
-2 & 0 & 7 & 2 & 0 \\
9 & -1 & 3 & -13 & 6 \\
-11 & -1 & 3 & 0 & 13
\end{array}\right], \\
C=\left[\begin{array}{ccc}
2 & 3 & 4 \\
3 & 5 & 0 \\
4 & 0 & -2
\end{array}\right] .
\end{gathered}
$$

4. State a property of the matrix C, and because of this property what can you say about the eigenvalues of C. [Hint : see 5.5 Exercise 24 or p.452, The Spectral Theorem (a).]
5. (a) Find $\operatorname{rank}(A)$.
(b) Find the RREF of A. How many pivots are there, and compare this with your answer in (a).
6. Find $B A$.
7. (a) Find $\operatorname{det}(B)$.
(b) Is B invertible? Explain your answer
(c) If B is invertible, find B^{-1}.
(d) From what you already know about B, what must its RREF equal? Explain.
8. Find the eigenvalues of B, and find an eigenvector for the eigenvalue $\lambda=$ -13 .
9. (a) Find the eigenvalues of C to 30 digit accuracy.
(b) Your answers in (a) will be complex numbers, that is contain $I=$ $\sqrt{-1}$. Explain why this is not in contradiction to the Spectral Theorem.
10. p.118-39 Let

$$
S=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Compute S^{k} for $k=2,3,4,5,6,7,800$.
11. p.118-40 Describe in words what happens when you compute $A^{5}, A^{10}, A^{20}, A^{30}$ for

$$
A=\left[\begin{array}{ccc}
1 / 6 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 3 & 1 / 4 & 5 / 12
\end{array}\right]
$$

