MIDTERM EXAMINATION
Friday, October 31, 2008
Duration: 50 minutes


| I agree that this paper may be placed at the front of the classroom for pick-up. |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| Please initial either YES |  | or NO |  |

NO CALCULATORS ALLOWED
ANSWER ALL QUESTIONS
SHOW ALL WORK

## LAST NAME

FIRST NAME
[5] 1. Solve the system:

$$
\begin{aligned}
x+2 y+2 z-3 u & =-2 \\
x+2 y+z & =0
\end{aligned}
$$

2. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Express $A$ as a product of elementary matrices.
3. Given that $A=\left[\begin{array}{rrr}-2 & -1 & -4 \\ 3 & 1 & 6 \\ 2 & 2 & 6\end{array}\right]$
(a) Find $a d j A$.
(b) Compute $A \cdot d j A$.
(c) Find $\operatorname{det} A$.

## FIRST NAME

[5] 4. Given that $A$ is a $3 \times 3$ matrices such that $\operatorname{det} A=-2$. Find $\operatorname{det}\left(\operatorname{adj} A+4 A^{-1}\right)$.

$$
x+y+z=1
$$

[5] 5. Consider the system $x-y+z=-1$. Use Crammer's rule to find the value $x+2 y+4 z=1$ of $y$.
[5] 6. A fox hunts in three territories A, B and C. He never hunts in the same territory on two consecutive days. If he hunts in A then he hunts in C the next day. If he hunts in B or C then he is twice likely to hunt in A the next day as in the other territory.
(a) Find the transition matrix P.
(b) If he hunts in A on Monday, what is the probability that he hunts in B the following Thursday?
[5] 7. Let $A$ denotes a square matrix. Show that the statement: "If $\operatorname{adj} A=0$ then $A=0$." is FALSE.

