MATHEMATICS 221 L03/11 FALL 2004 **QUIZ 2 SOLUTION**

Wednesday, October 6, 2004 at 15:00

1. Let
$$A = \begin{bmatrix} 2 & 1 & 2 \\ -3 & -1 & -1 \\ 5 & 2 & 1 \end{bmatrix}$$
. Find A^{-1} . Make sure that you show all the work.

$$\begin{bmatrix} 2 & 1 & 2 & 1 & 0 & 0 \\ -3 & -1 & -1 & 0 & 1 & 0 \\ 5 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} -1 & 0 & 1 & 1 & 1 & 0 \\ -3 & -1 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{R_1 + R_3} \xrightarrow{R_2 - R_3} \begin{bmatrix} -2 & 0 & 0 & 1 & 3 & 1 \\ -2 & -1 & 0 & 0 & -1 & -1 \\ -1 & 0 & -1 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{-R_1} \begin{bmatrix} 2 & 0 & 0 & -1 & -3 & -1 \\ 2 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & -2 & -1 \end{bmatrix} \xrightarrow{R_1 + R_3} \xrightarrow{R_2 - R_3}$$

$$\begin{bmatrix} 2 & 0 & 0 & -1 & -3 & -1 \\ 0 & 1 & 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \xrightarrow{\frac{1}{2}} R_1 \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & -1 & 4 & 2 \\ 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Thus,
$$A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{-3}{2} & \frac{-1}{2} \\ -1 & 4 & 2 \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 & -3 & -1 \\ -2 & 8 & 4 \\ 1 & -1 & -1 \end{bmatrix}$$

2. Find the matrix A given that $(2A^T - 3I)^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$.

Solution:

$$(2A^{T} - 3I)^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \Leftrightarrow 2A^{T} - 3I = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$
 by taking inverses
$$\Leftrightarrow 2A^{T} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} + 3I$$

$$\Leftrightarrow A^{T} = \frac{1}{2} \left(\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} + 3I \right)$$

$$\Leftrightarrow A^{T} = \frac{1}{2} \begin{bmatrix} 4 & -2 \\ -1 & 6 \end{bmatrix}$$

$$\Leftrightarrow A = \frac{1}{2} \begin{bmatrix} 4 & -1 \\ -2 & 6 \end{bmatrix}$$
 by transposing

3. Let A be a square matrix. Prove or disprove each of the following statements: (a) If $A^2 = A$ and $A \neq 0$ then A is invertible.

Solution: This statement is false because with $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, we see that $A^2 = A$ and $A \neq 0$, but A is not invertible.

(b) If $A^3 = 3I$ then A is invertible.

Solution: This statement is true. Suppose that A is a square matrix so that $A^3 = 3I$. Then $A\left(\frac{1}{3}A^3\right) = \frac{1}{3}A^3 = \frac{1}{3}(3I) = I$ and so A is invertible.

Friday, October 8, 2004 at 11:00

1. Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & -1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$. Find A^{-1} . Make sure that you show all the work.

Solution:

olution:
$$\begin{bmatrix} 2 & 1 & 3 & 1 & 0 & 0 \\ 3 & -1 & 1 & 0 & 1 & 0 \\ 4 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 5 & 0 & 4 & 1 & 1 & 0 \\ 3 & -1 & 1 & 0 & 1 & 0 \\ 10 & 0 & 3 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1} \longrightarrow \begin{bmatrix} 5 & 0 & 4 & 1 & 1 & 0 \\ 3 & -1 & 1 & 0 & 1 & 0 \\ 3 & -1 & 1 & 0 & 1 & 0 \\ 5 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{R_1 + 4R_3} \begin{bmatrix} 25 & 0 & 0 & -3 & 5 & 4 \\ 8 & -1 & 0 & -1 & 2 & 1 \\ 5 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{25}R_1} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{3}{25} & \frac{1}{5} & \frac{4}{25} \\ 8 & -1 & 0 & -1 & 2 & 1 \\ 5 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - 8R_1} \begin{bmatrix} 1 & 0 & 0 & -\frac{3}{25} & \frac{1}{5} & \frac{4}{25} \\ 0 & -1 & 0 & -\frac{1}{25} & \frac{2}{5} & -\frac{7}{25} \\ 0 & 1 & 0 & \frac{1}{25} & -\frac{2}{5} & \frac{7}{25} \\ 0 & 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \end{bmatrix}$$

Thus,
$$A^{-1} = \begin{bmatrix} -\frac{3}{25} & \frac{1}{5} & \frac{4}{25} \\ \frac{1}{25} & -\frac{2}{5} & \frac{7}{25} \\ \frac{2}{5} & 0 & -\frac{1}{5} \end{bmatrix} = \frac{1}{25} \begin{bmatrix} -3 & 5 & 4 \\ 1 & -10 & 7 \\ 10 & 0 & -5 \end{bmatrix}$$

2. Find the matrix A given that $\left(A^T - 3\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}\right)^{-1} = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ [6]

Solution: By taking inverses w

Solution: By taking inverses we have
$$\begin{pmatrix}
A^T - 3 \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}
\end{pmatrix}^{-1} = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \iff A^T - 3 \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \\
\iff A^T = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \\
\iff A^T = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} + 6 \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \end{pmatrix} .$$

$$\iff A^T = \frac{1}{2} \begin{bmatrix} 7 & -1 \\ 11 & -3 \end{bmatrix} \\
\iff A = \frac{1}{2} \begin{bmatrix} 7 & -1 \\ 11 & -3 \end{bmatrix}^T = \frac{1}{2} \begin{bmatrix} 7 & 11 \\ -1 & -3 \end{bmatrix}$$
3. Let A be a square matrix. Prove or disprove each of the following statements:

(a) If $A^2 = A$ then A = 0 or A = I.

Solution: This statement is false because when $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, we have $A^2 = A$, but $A \neq 0$

(b) If $A^2 = 0$ then I - A is invertible and $(I - A)^{-1} = I + A$.

Solution: This statement is true. Let A be a square matrix so that $A^2 = 0$. Then $(I - A)(I + A) = I^2 - A + A - A^2 = I - A^2 = I$, and so I - A is invertible and $(I - A)^{-1} = I + A$.