FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAMINATION SOLUTION MATH 221 (L05) FALL 2006

1. Solve the system:

Solution:
$$\begin{bmatrix} 1 & 0 & -1 & 2 & 1 & 2 \\ -2 & 1 & 2 & -1 & 0 & -7 \\ 1 & 1 & -1 & 3 & 1 & -1 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & 0 & -1 & 2 & 1 & 2 \\ 0 & 1 & 0 & 3 & 2 & -3 \\ 0 & 1 & 0 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & -1 & 2 & 1 & 2 \\ 0 & 1 & 0 & 3 & 2 & -3 \\ 0 & 0 & 0 & -2 & -2 & 0 \end{bmatrix} \xrightarrow{\left(-\frac{1}{2}\right) R_2} \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{1}{2} &$$

$$y = t-3$$

Thus, $z = s$ where s and t are any numbers.
 $u = -t$

$$egin{array}{cccc} u & = & -t \ w & = & t \end{array}$$

2. Let
$$A = \begin{bmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{bmatrix}$$
.

(a) Find all values of x so that A is not invertible.

Solution:

$$\det A = \begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} \begin{vmatrix} R_2 - xR_1 \\ R_3 - xR_1 \end{vmatrix} = \begin{vmatrix} 1 & x & x \\ 0 & 1 - x^2 & x - x^2 \\ 0 & x - x^2 & 1 - x^2 \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 & x & x \\ 0 & 1 + x & x \\ 0 & x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\ x & 1 + x \end{vmatrix} = (1 - x)^2 \begin{vmatrix} 1 + x & x \\$$

A is not invertible exactly when
$$\det A = (1-x)^2 (2x+1) = 0$$
, that is, $x=1$ or $x=-\frac{1}{2}$

(b) Is it true that if A is not invertible then the system AX = 0 has no solutions? Explain.

Solution: It is not true that if A is not invertible then the system AX = 0 has no solutions, because for any matrix A the homogeneous system AX = 0 always has a solution, namely, X = 0.

$$\textbf{3. Let } A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right] \text{ and } B = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right].$$

Solution:

Solution:
$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 \\ 2 & 1 & 3 & | & 0 & 1 \end{bmatrix} \xrightarrow{E_1} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 \\ 0 & -3 & -3 & | & -2 & 1 \end{bmatrix} \xrightarrow{-\frac{1}{3}R_2} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 \\ 0 & 1 & 1 & | & \frac{2}{3} & \frac{-1}{3} \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\text{Thus, }} U = \begin{bmatrix} \frac{-1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{-3}{3} \end{bmatrix}$$
(b) Express U^{-1} as a product of elementary matrices.

$$U = E_3 E_2 E_1$$
, so $U^{-1} = (E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.

4. Let
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix}$$
.

(a) Find an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

$$c_{A}(x) = \det(A - xI) = \begin{vmatrix} 3 - x & -4 \\ 1 & -2 - x \end{vmatrix} = (3 - x)(-2 - x) + 4 = x^{2} - x - 2 = (x + 1)(x - 2) = 0$$

1

when x = -1 or x = 2.

Thus, the eigenvalues are $\lambda_1 = \text{and } \lambda_2 = 2$.

To find the eigenvectors corresponding to the eigenvalue -1, we solve the system (A+I)X=0

$$\begin{bmatrix} 4 & -4 & 0 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow{R_1 - 4R_2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \xrightarrow{} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The eigenvectors corresponding to the eigenvalue -1 are $X = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ where t is any number.

To find the eigenvectors corresponding to the eigenvalue 2, we solve the system (A-2I)X=0

$$\left[\begin{array}{ccc} 1 & -4 & 0 \\ 1 & -4 & 0 \end{array}\right] \quad \stackrel{\textstyle \rightarrow}{R_2 - R_1} \quad \left[\begin{array}{ccc} 1 & -4 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

The eigenvectors corresponding to the eigenvalue 2 are $X = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ where t is any number.

$$P = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

(b) Compute A^7 .

Solution:

lution:

$$A^{7} = PD^{7}P^{-1} = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (-1)^{7} & 0 \\ 0 & 2^{7} \end{bmatrix} \begin{pmatrix} \frac{1}{3} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} \end{pmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 128 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 128 & -128 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 513 & -516 \\ 129 & -132 \end{bmatrix}$$

$$= \begin{bmatrix} 171 & -172 \\ 43 & -44 \end{bmatrix}$$

5. Let
$$A^{-1} = \begin{bmatrix} 2 & 1 & 2 \\ -3 & -1 & -1 \\ 5 & 2 & 1 \end{bmatrix}$$
.

(a) Find det A

Solution:
$$\det A^{-1} = \begin{vmatrix} 2 & 1 & 2 & R_1 + R_2 \\ -3 & -1 & -1 & R_3 + 2R_2 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 1 \\ -3 & -1 & -1 \\ -1 & 0 & -1 \end{vmatrix} = - \begin{vmatrix} -1 & 1 \\ -1 & -1 \end{vmatrix} = -2$$
, and so

 $\det A^{-1} = 2$ (b) Find dot $(A^{-1} + 2adi A)$

Solution:
$$\det (A^{-1} + 2adjA) = \det (A^{-1} + 2(\det A)A^{-1}) = \det (A^{-1} + 2(-\frac{1}{2})A^{-1}) = \det 0 = 0.$$

6. Let A be a square matrix. Prove the following statements:

(a) If A is not invertible then 0 is an eigenvalue of A.

Solution: Suppose that A is not invertible, then the homogeneous system AX = 0 has a non-trivial solution, that is there exist a nonzero column X so that AX = 0 = 0X, which implies that 0 is an eigenvalue of A.

(b) If A is diagonalizable then A^T is also diagonalizable.

Solution: Suppose that A is diagonalizable. Then there exists an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$. Now, $P^{T}A^{T}(P^{-1})^{T} = (P^{-1}AP)^{T} = D^{T} = D$. Thus,

$$P^T A^T \left(P^{-1} \right)^T = D. \tag{*}$$

Let $Q = (P^{-1})^T = (P^T)^{-1}$. then $Q^{-1} = P^T$ and (*) becomes $Q^{-1}A^TQ = D$ which implies that A^T is diagonalizable.

7. For the following, express your answers in the form a + bi where a and b are real numbers.

(a) Compute $(1 - \sqrt{3}i)^{10}$.

Solution:

$$\begin{array}{rcl} \left(1-\sqrt{3}i\right)^{10} & = & \left(2e^{i\left(-\frac{\pi}{3}\right)}\right)^{10} \\ & = & 2^{10}e^{i\left(-\frac{10\pi}{3}\right)} \\ & = & 2^{10}\left(\cos\left(-\frac{10\pi}{3}\right)+i\sin\left(-\frac{10\pi}{3}\right)\right) \\ & = & 2^{10}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right) \\ & = & -512+512\sqrt{3}i \end{array}$$
 (b) Find all complex numbers z so that $z^4=-16$.

- **8.** Consider the points A(2,1,-2), B(4,1,0) and C(6,3,0).
- (a) Find the internal angles of the triangle with vertices A, B and C.

Solution: Let α, β, γ be the angles at A, B, C respectively.

Since α is the angle between \overrightarrow{AB} and \overrightarrow{AC} , $\cos \alpha = \frac{\overrightarrow{AB} \bullet \overrightarrow{AC}}{\|\overrightarrow{AB}\| \|\overrightarrow{AC}\|} = \frac{[2,0,2]^T \bullet [4,2,2]^T}{\sqrt{8\sqrt{24}}} = \frac{12}{8\sqrt{3}} = \frac{\sqrt{3}}{2}$ and so

$$\alpha = \frac{\pi}{6}$$

Similarly, β is the angle between \overrightarrow{BA} and \overrightarrow{BC} , $\cos \beta = \frac{\overrightarrow{BA} \bullet \overrightarrow{BC}}{\|\overrightarrow{BA}\| \|\overrightarrow{BC}\|} = \frac{[-2,0,-2]^T \bullet [2,2,0]^T}{\sqrt{8}\sqrt{8}} = \frac{-4}{8} = \frac{-1}{2}$ and so

$$\beta = \frac{2\pi}{3}.$$

Lastly,
$$\gamma = \pi - (\alpha + \beta) = \pi - (\frac{\pi}{6} + \frac{2\pi}{3}) = \frac{\pi}{6}$$

(b) Find an equation of the plane containing the points A, B and C.

Solution: A normal of the plane is $\overrightarrow{n} = \frac{1}{4}\overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{4}[2,0,2]^T \times [4,2,2]^T = [1,0,1]^T \times [2,1,1]^T = [-1,1,1]^T$ and so an equation of the plane is -x+y+z=-3.

- **9**. Let P_1 be the plane with equation x + 2y z = 2 and P_2 be the plane with equation 2x y + z = 2. Let L be the line of intersection of the planes P_1 and P_2 .
- (a) Is the point A(1,1,1) on both of the planes P_1 and P_2 ? Explain.

Solution: Yes, the point A(1,1,1) is on both of the planes P_1 and P_2 because its coordinates satisfy both equations of the two planes.

(b) Find an equation of the line L.

Solution: Since L lies in both planes, it is perpendicular to both of the normals $\overrightarrow{n_1}$ and $\overrightarrow{n_2}$ of the planes, we can choose a direction of the line to be $\overrightarrow{d} = \overrightarrow{n_1} \times \overrightarrow{n_2} = [1, 2, -1]^T \times [2, -1, 1]^T = [1, -3, -5]^T$, and from part (a), a pont on L is A(1, 1, 1).Thus an equation of L is $[x, y, z]^T = [1, 1, 1]^T + t[1, -3, -5]^T$

(c) Find the shortest distance between the point B(4, -3, -3) and the line L, also find the point Q on the line L that is closest to B.

Solution: Q on the line L, so the coordinates of Q is Q(1+t,1-3t,1-5t) and therefore, $\overrightarrow{BQ} = [t-3,4-3t,4-5t]^T$. Since Q is the point on the line L that is closest to B, we have $\overrightarrow{BQ} \bullet \overrightarrow{d} = 0$, that is, (t-3) - 3(4-3t) - 5(4-5t) = 0 which gives t = 1. Thus the coordinates of Q is Q(2,-2,-4) and the shortest distance between the point B(4,-3,-3) and the line L is $\|\overrightarrow{BQ}\| = \|[-2,1,-1]^T\| = \sqrt{6}$.

10 .Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $T\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (a) Find the matrix of T; that is, find a matrix A so that $T\overrightarrow{v} = A\overrightarrow{v}$ for all $\overrightarrow{v} \in \mathbb{R}^2$.

Solution: Since $T[1]^2 = A[1]^2 = [1]^3$ and $T[3]^2 = A[3]^2 = [1]^2$, we get $A[2]^3 = [1]^3 = [1]^3$, and so,

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 3 \\ 1 & 2 \end{array}\right]^{-1} = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & -3 \\ -1 & 2 \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ 3 & -4 \end{array}\right]$$

(b) Is T invertible? If T is invertible, find the matrix of T^{-1} .

Solution: T is invertible because its matrix is invertible (note that $\det A = -3$), and the matrix of T^{-1} is $A^{-1} = \frac{1}{3} \begin{bmatrix} 4 & 1 \\ 3 & 0 \end{bmatrix}$

(c) Is there a vector $\overrightarrow{a} \in \mathbb{R}^2$ so that $T\overrightarrow{a} = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$? If so, find \overrightarrow{a} .

Solution: Yes, in fact, $\overrightarrow{a} = T^{-1}(T\overrightarrow{a}) = T^{-1} = A^{-1}\begin{bmatrix} -3 \\ 7 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 4 & 1 \\ 3 & 0 \end{bmatrix}\begin{bmatrix} -3 \\ 7 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} -5 \\ -9 \end{bmatrix}$

End of Examination