FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS AND STATISTICS
FINAL EXAMINATION SOLUTION
MATH 221 (L05) FALL 2006

1. Solve the system:

Solution:

$$
\left[\begin{array}{cccccc}
1 & 0 & -1 & 2 & 1 & 2 \\
-2 & 1 & 2 & -1 & 0 & -7 \\
1 & 1 & -1 & 3 & 1 & -1
\end{array}\right] \begin{gathered}
\rightarrow \\
R_{2}+2 R_{1} \\
R_{3}-R_{1}
\end{gathered}\left[\begin{array}{cccccc}
1 & 0 & -1 & 2 & 1 & 2 \\
0 & 1 & 0 & 3 & 2 & -3 \\
0 & 1 & 0 & 1 & 0 & -3
\end{array}\right] \quad \begin{array}{cccccc}
\\
& x=s+t+2 \\
& y=t-3
\end{array}
$$

Thus, $z=s \quad$ where s and t are any numbers.

$$
u=-t
$$

$$
w=t
$$

2. Let $A=\left[\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right]$.
(a) Find all values of x so that A is not invertible.

Solution:

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right| \begin{array}{rrr}
R_{2}-x R_{1} \\
R_{3}-x R_{1}
\end{array}=\left|\begin{array}{rrrr}
1 & x & x \\
0 & 1-x^{2} & x-x^{2} \\
0 & x-x^{2} & 1-x^{2}
\end{array}\right|=(1-x)^{2}\left|\begin{array}{rrr}
1 & x & x \\
0 & 1+x & x \\
0 & x & 1+x
\end{array}\right|=(1-x)^{2}\left|\begin{array}{rr}
1+x & x \\
x & 1+x
\end{array}\right|=
$$ $(1-x)^{2}(2 x+1)$.

A is not invertible exactly when $\operatorname{det} A=(1-x)^{2}(2 x+1)=0$, that is, $x=1$ or $x=-\frac{1}{2}$
(b) Is it true that if A is not invertible then the system $A X=0$ has no solutions? Explain.

Solution: It is not true that if A is not invertible then the system $A X=0$ has no solutions, because for any matrix A the homogeneous system $A X=0$ always has a solution, namely, $X=0$.
3. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
(a) Find an invertible matrix U such that $U A=B$.

Solution:
$\left[\begin{array}{ccc|cc}1 & 2 & 3 & 1 & 0 \\ 2 & 1 & 3 & 0 & 1\end{array}\right] \begin{gathered}E_{1} \\ R_{2}-2 R_{1}\end{gathered}\left[\begin{array}{rrr|rr}1 & 2 & 3 & 1 & 0 \\ 0 & -3 & -3 & -2 & 1\end{array}\right] \underset{-\frac{1}{3} R_{2}}{\rightarrow}\left[\begin{array}{rrr|rr}1 & 2 & 3 & 1 & 0 \\ 0 & 1 & 1 & \frac{2}{3} & \frac{-1}{3}\end{array}\right] \begin{gathered}R_{1}-2 R_{2} \\ \rightarrow\end{gathered}\left[\left.\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array} \right\rvert\,\right.$
Thus, $U=\left[\begin{array}{rr}\frac{-1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{-1}{3}\end{array}\right]$
(b) Express U^{-1} as a product of elementary matrices.
$U=E_{3} E_{2} E_{1}$, so $U^{-1}=\left(E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$.
4. Let $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -2\end{array}\right]$.
(a) Find an invertible matrix P and a diagonal matrix D so that $P^{-1} A P=D$.

$$
c_{A}(x)=\operatorname{det}(A-x I)=\left|\begin{array}{rr}
3-x & -4 \\
1 & -2-x
\end{array}\right|=(3-x)(-2-x)+4=x^{2}-x-2=(x+1)(x-2)=0
$$

when $x=-1$ or $x=2$.
Thus, the eigenvalues are $\lambda_{1}=$ and $\lambda_{2}=2$.
To find the eigenvectors corresponding to the eigenvalue -1 , we solve the system $(A+I) X=0$

$$
\left[\begin{array}{ccc}
4 & -4 & 0 \\
1 & -1 & 0
\end{array}\right] \underset{\rightarrow}{R_{1}-4 R_{2}}\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right] \underset{\rightarrow}{R_{1}} \underset{\rightarrow}{\longleftrightarrow} \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& x \quad-z+2 u+w=2 \\
& -2 x+y+2 z-u \quad=-7 \\
& x+y-z+3 u+w=-1
\end{aligned}
$$

The eigenvectors corresponding to the eigenvalue -1 are $X=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$ where t is any number. To find the eigenvectors corresponding to the eigenvalue 2 , we solve the system $(A-2 I) X=0$

$$
\left[\begin{array}{lll}
1 & -4 & 0 \\
1 & -4 & 0
\end{array}\right] \quad \xrightarrow{\rightarrow} \quad R_{2}-\left[\begin{array}{ccc}
1 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The eigenvectors corresponding to the eigenvalue 2 are $X=t\left[\begin{array}{l}4 \\ 1\end{array}\right]$ where t is any number.

$$
P=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]
$$

(b) Compute A^{7}.

Solution:

$$
\begin{aligned}
A^{7}==P D^{7} P^{-1} & =\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(-1)^{7} & 0 \\
0 & 2^{7}
\end{array}\right]\left(\frac{1}{3}\left[\begin{array}{cc}
-1 & 4 \\
1 & -1
\end{array}\right]\right) \\
& =\frac{1}{3}\left[\begin{array}{ll}
1 & 4 \\
1 & 1 \\
1 & 4 \\
-1 & 0 \\
0 & 128
\end{array}\right]\left[\begin{array}{cc}
-1 & 4 \\
1 & -4 \\
1 & -1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
1 & 1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
513 & -516 \\
129 & -132
\end{array}\right] \\
& =\left[\begin{array}{cc}
171 & -172 \\
43 & -44
\end{array}\right]
\end{aligned}
$$

5. Let $A^{-1}=\left[\begin{array}{rrr}2 & 1 & 2 \\ -3 & -1 & -1 \\ 5 & 2 & 1\end{array}\right]$.
(a) Find $\operatorname{det} A$.

Solution: $\operatorname{det} A^{-1}=\left|\begin{array}{rrr}2 & 1 & 2 \\ -3 & -1 & -1 \\ 5 & 2 & 1\end{array}\right| \begin{gathered}R_{1}+R_{2} \\ R_{3}+2 R_{2}\end{gathered}=\left|\begin{array}{rrr}-1 & 0 & 1 \\ -3 & -1 & -1 \\ -1 & 0 & -1\end{array}\right|=-\left|\begin{array}{rr}-1 & 1 \\ -1 & -1\end{array}\right|=-2$, and so $\operatorname{det} A=\frac{1}{\operatorname{det} A^{-1}}=-\frac{1}{2}$.
(b) Find $\operatorname{det}\left(A^{-1}+2 a d j A\right)$.

Solution: $\operatorname{det}\left(A^{-1}+2 a d j A\right)=\operatorname{det}\left(A^{-1}+2(\operatorname{det} A) A^{-1}\right)=\operatorname{det}\left(A^{-1}+2\left(-\frac{1}{2}\right) A^{-1}\right)=\operatorname{det} 0=0$.
6. Let A be a square matrix. Prove the following statements:
(a) If A is not invertible then 0 is an eigenvalue of A.

Solution: Suppose that A is not invertible, then the homogeneous system $A X=0$ has a non-trivial solution, that is there exist a nonzero column X so that $A X=0=0 X$, which implies that 0 is an eigenvalue of A.
(b) If A is diagonalizable then A^{T} is also diagonalizable.

Solution: Suppose that A is diagonalizable. Then there exists an invertible matrix P and a diagonal matrix D so that $P^{-1} A P=D$. Now, $P^{T} A^{T}\left(P^{-1}\right)^{T}=\left(P^{-1} A P\right)^{T}=D^{T}=D$. Thus,

$$
\begin{equation*}
P^{T} A^{T}\left(P^{-1}\right)^{T}=D \tag{*}
\end{equation*}
$$

Let $Q=\left(P^{-1}\right)^{T}=\left(P^{T}\right)^{-1}$. then $Q^{-1}=P^{T}$ and $(*)$ becomes $Q^{-1} A^{T} Q=D$ which implies that A^{T} is diagonalizable.
7. For the following, express your answers in the form $a+b i$ where a and b are real numbers.
(a) Compute $(1-\sqrt{3} i)^{10}$.

Solution:

$$
\begin{aligned}
(1-\sqrt{3} i)^{10} & =\left(2 e^{i\left(-\frac{\pi}{3}\right)}\right)^{10} \\
& =2^{10} e^{i\left(-\frac{10 \pi}{3}\right)} \\
& =2^{10}\left(\cos \left(-\frac{10 \pi}{3}\right)+i \sin \left(-\frac{10 \pi}{3}\right)\right) \\
& =2^{10}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =-512+512 \sqrt{3} i
\end{aligned}
$$

(b) Find all complex numbers z so that $z^{4}=-16$.
8. Consider the points $A(2,1,-2), B(4,1,0)$ and $C(6,3,0)$.
(a) Find the internal angles of the triangle with vertices A, B and C.

Solution: Let α, β, γ be the angles at A, B, C respectively.
Since α is the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}, \cos \alpha=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|\overrightarrow{A B}\|\|\overrightarrow{A C}\|}=\frac{[2,0,2]^{T} \bullet[4,2,2]^{T}}{\sqrt{8} \sqrt{24}}=\frac{12}{8 \sqrt{3}}=\frac{\sqrt{3}}{2}$ and so $\alpha=\frac{\pi}{6}$.

Similarly, β is the angle between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \cos \beta=\frac{\overrightarrow{B A} \bullet \overrightarrow{B C}}{\|\overrightarrow{B A}\| \overrightarrow{B C} \|}=\frac{[-2,0,-2]^{T} \bullet[2,2,0]^{T}}{\sqrt{8} \sqrt{8}}=\frac{-4}{8}=\frac{-1}{2}$ and so $\beta=\frac{2 \pi}{3}$.

Lastly, $\gamma=\pi-(\alpha+\beta)=\pi-\left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)=\frac{\pi}{6}$
(b) Find an equation of the plane containing the points A, B and C.

Solution: A normal of the plane is $\vec{n}=\frac{1}{4} \overrightarrow{A B} \times \overrightarrow{A C}=\frac{1}{4}[2,0,2]^{T} \times[4,2,2]^{T}=[1,0,1]^{T} \times[2,1,1]^{T}=$ $[-1,1,1]^{T}$ and so an equation of the plane is $-x+y+z=-3$.
9. Let P_{1} be the plane with equation $x+2 y-z=2$ and P_{2} be the plane with equation $2 x-y+z=2$. Let L be the line of intersection of the planes P_{1} and P_{2}.
(a) Is the point $A(1,1,1)$ on both of the planes P_{1} and P_{2} ? Explain.

Solution: Yes, the point $A(1,1,1)$ is on both of the planes P_{1} and P_{2} because its coordinates satisfy both equations of the two planes.
(b) Find an equation of the line L.

Solution: Since L lies in both planes, it is perpendicular to both of the normals $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ of the planes, we can choose a direction of the line to be $\vec{d}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=[1,2,-1]^{T} \times[2,-1,1]^{T}=[1,-3,-5]^{T}$, and from part (a), a pont on L is $A(1,1,1)$.Thus an equation of L is $[x, y, z]^{T}=[1,1,1]^{T}+t[1,-3,-5]^{T}$
(c) Find the shortest distance between the point $B(4,-3,-3)$ and the line L, also find the point Q on the line L that is closest to B.
Solution: Q on the line L, so the coordinates of Q is $Q(1+t, 1-3 t, 1-5 t)$ and therefore, $\overrightarrow{B Q}=[t-3,4-3 t, 4-5 t]^{T}$. Since Q is the point on the line L that is closest to B, we have $\overrightarrow{B Q} \bullet \vec{d}=0$, that is, $(t-3)-3(4-3 t)-$ $5(4-5 t)=0$ which gives $t=1$. Thus the coordinates of Q is $Q(2,-2,-4)$ and the shortest distance between the point $B(4,-3,-3)$ and the line L is $\|\overrightarrow{B Q}\|=\left\|[-2,1,-1]^{T}\right\|=\sqrt{6}$.

10 .Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(a)Find the matrix of T; that is, find a matrix A so that $T \vec{v}=A \vec{v}$ for all $\vec{v} \in \mathbb{R}^{2}$.

Solution: Since $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=A\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left[\begin{array}{l}3 \\ 2\end{array}\right]=A\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{c}2 \\ 1\end{array}\right]$, we get $A\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, and so, $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 3 & -4\end{array}\right]$
(b) Is T invertible? If T is invertible, find the matrix of T^{-1}.

Solution: T is invertible because its matrix is invertible (note that $\operatorname{det} A=-3$), and the matrix of T^{-1} is $A^{-1}=\frac{1}{3}\left[\begin{array}{ll}4 & 1 \\ 3 & 0\end{array}\right]$
(c) Is there a vector $\vec{a} \in \mathbb{R}^{2}$ so that $T \vec{a}=\left[\begin{array}{c}-3 \\ 7\end{array}\right]$? If so, find \vec{a}.

Solution: Yes, in fact, $\vec{a}=T^{-1}(T \vec{a})=T^{-1}=A^{-1}\left[\begin{array}{c}-3 \\ 7\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}4 & 1 \\ 3 & 0\end{array}\right]\left[\begin{array}{c}-3 \\ 7\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}-5 \\ -9\end{array}\right]$

End of Examination

