MATHEMATICS 221 L05 FALL 2006 MIDTERM EXAMINATION

Friday, November 3, 2006 Duration: 50 minutes

I.I). #				╛	
					_	
			. 1		C + 1	

I agree that this paper may be placed a	t the front of the clas	ssroom for pick-up.
Please initial either YES	or NO	

NO CALCULATORS ALLOWED ANSWER ALL QUESTIONS SHOW ALL WORK

LAST NAME_

FIRST NAME

[5] 1. Solve the system:

[5] **2.** Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Express A as a product of elementary matrices.

[5] **3**. Let A, B, C denote matrices. Show that the statement: "If AB = AC and $A \neq 0$ then B = C" is false.

[5] **4.** Given that $\left(\frac{1}{2}A^{T} + 3I\right)^{-1} = 2\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$. Find A.

LAST NAME_

FIRST NAME

[10]

- $\begin{bmatrix} 6 \\ 6 \end{bmatrix}$ **5**. Given that $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- (a) Find adj A.

(b) Compute A.djA.

(c) Find $\det A$.

- [10] **6.** Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 so that $T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}$ and $T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}$.
 - (a) Find the matrix for T, that is, find a matrix A so that T(X) = AX for all $X \in \mathbb{R}^2$.

(b) Is T invertible? Explain. If T is invertible, find $T^{-1}\left(\left[\begin{array}{c}1\\-1\end{array}\right]\right)$.