NAME ID

MATHEMATICS 249 MIDTERM November 8, 2005
SHOW ALL WORK. Marks for each problem are to the left of the problem number. NO CALCULATORS PLEASE.
[5] 1. Find $\lim _{x \rightarrow-2}\left(\frac{4 x^{2}+x-14}{3 x+6}\right)$. (If it is possible to give the answer ∞ or $-\infty$, do so.)
[5] 2. Find $\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x-5}-\frac{x^{2}}{x+5}\right)$. (If it is possible to give the answer ∞ or $-\infty$, do so.)
[5] 3. Find $\lim _{x \rightarrow 1^{-}}\left(\frac{x-11}{1-x}\right)$. (If it is possible to give the answer ∞ or $-\infty$, do so.)
[5] 4. Find $\frac{d}{d x}\left(x^{2} \sqrt{8-3 \cos ^{3} x}\right)$.
[5] 5. Find $\frac{d}{d x}\left(\frac{\tan \left(7 x^{4}\right)}{x^{2}-6 x+3}\right)$.
[5] 6. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}(\sqrt{3-4 x})$.
[5] 7. Use implicit differentiation to find $\frac{d y}{d x}$ where $\sin (x-y)=\sqrt{x}-\sqrt{y}$.
[5] 8. Find the equation of the tangent line to the curve $y=\frac{4}{8-3 x}$ at the point on the curve where $x=2$.
[5] 9. Find constants a and b so that the function

$$
f(x)= \begin{cases}a x^{2}+b & \text { if } x \leq-1 \\ 2 x-5 & \text { if } x>-1\end{cases}
$$

is both continuous and differentiable at $x=-1$.

