NAME_____ID___

MATHEMATICS 249

MIDTERM

November 8, 2005

SHOW ALL WORK. Marks for each problem are to the left of the problem number. NO CALCULATORS PLEASE.

[5] 1. Find
$$\lim_{x\to -2} \left(\frac{4x^2+x-14}{3x+6}\right)$$
. (If it is possible to give the answer ∞ or $-\infty$, do so.)

[5] 2. Find
$$\lim_{x\to\infty} \left(\frac{x^2}{x-5} - \frac{x^2}{x+5}\right)$$
. (If it is possible to give the answer ∞ or $-\infty$, do so.)

[5] 3. Find
$$\lim_{x\to 1^-} \left(\frac{x-11}{1-x}\right)$$
. (If it is possible to give the answer ∞ or $-\infty$, do so.)

[5] 4. Find
$$\frac{d}{dx} \left(x^2 \sqrt{8 - 3\cos^3 x} \right)$$
.

[5] 5. Find
$$\frac{d}{dx} \left(\frac{\tan(7x^4)}{x^2 - 6x + 3} \right).$$

[5] 6. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{dx} \left(\sqrt{3-4x} \right)$.

[5] 7. Use implicit differentiation to find $\frac{dy}{dx}$ where $\sin(x-y) = \sqrt{x} - \sqrt{y}$.

[5] 8. Find the equation of the tangent line to the curve $y = \frac{4}{8-3x}$ at the point on the curve where x = 2.

[5] 9. Find constants a and b so that the function

$$f(x) = \begin{cases} ax^2 + b & \text{if } x \le -1\\ 2x - 5 & \text{if } x > -1 \end{cases}$$

is both continuous and differentiable at x = -1.