THE UNIVERSITY OF CALGARY
MATHEMATICS 249 L04
FINAL EXAMINATION, FALL 2009
TIME: 2 HOURS

NAME \qquad ID \qquad Section

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	
$($ max. 75$)$	

SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [75]. THIS EXAM HAS 8 PAGES INCLUDING THIS ONE.
[5] 1. Find $\lim _{x \rightarrow-1}\left(\frac{1}{x+1}+\frac{2}{x^{2}-1}\right)$. Do not use l'Hôpital's Rule.
[5] 2. Find $\lim _{x \rightarrow 3}\left(\frac{\ln \left(x^{2}-8\right)}{\ln (x-2)}\right)$.
[5] 3. Find $\frac{d}{d x}\left(\frac{x^{4}}{2 x-\tan x}\right)$.
[5] 4. Find $\frac{d}{d x}\left(\sin \left(x^{1 / 2} \cos x\right)\right)$.
[6] 5. USE THE LIMIT DEFINITION OF DERIVATIVE to find $\frac{d}{d x}\left(\frac{2}{4-x}\right)$.
[6] 6. Use implicit differentiation to find the slope of the tangent line to the curve given by $x+y=e^{x}-e^{3 y}+4$ at the point $(3,1)$ lying on this curve.
[14] 7. For the function $f(x)=\frac{x^{2}}{2-x}$, you are given that

$$
f^{\prime}(x)=\frac{x(4-x)}{(2-x)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{8}{(2-x)^{3}} .
$$

(a) Find the critical points of $f(x)$.
(b) Find the intervals of increase and decrease of $f(x)$. Use them to determine whether each critical point in part (a) is a relative maximum, relative minimum, or neither.
(c) Find the absolute maximum and absolute minimum of $f(x)$ for x in the interval $[-1,1]$.
(d) Find the intervals where $f(x)$ is concave up and where it is concave down.
[6] 8. The function f is defined by $f(x)= \begin{cases}\frac{5}{x} & \text { if } x<-1, \\ \frac{a}{x^{2}+1} & \text { if } x \geq-1 .\end{cases}$
(a) Find the constant a so that the function f is continuous at $x=-1$.
(b) For the value of a found in part (a), is f differentiable at $x=-1$? Explain.
[6] 9. An object moves on the number line according to the position function $s(t)=t^{3}-18 t$.
(a) Find the velocity $v(t)$ and the acceleration $a(t)$ of the object.
(b) Find all times when the object is stopped.
[5] 10. Find and simplify $\int_{0}^{1}\left(5 x^{2 / 3}-2 x+3\right) d x$.
[5] 11. Find and simplify $\int \frac{x}{7 x^{2}-8} d x$.
[7] 12. (a) Find two nonnegative numbers x and y so that their sum is 4 and so that $x^{3}+y^{2}$ is as small as possible.
(b) Find two nonnegative numbers x and y so that their sum is 4 and so that $x^{3}+y^{2}$ is as large as possible.
[75]

