MATH 271 ASSIGNMENT 4 SOLUTIONS

1. For each positive integer n, let [n] = {1,2,3,...,n}, and define

(a)
(b)
(c)

(d)

()

Su(n) = the set of all ordered pairs (A, B) of sets such that AU B = [n];
Sn(n) = the set of all ordered pairs (4, B) of subsets of [n] such that AN B = 0
Sc(n) = the set of all ordered pairs (A, B) of subsets of [n] such that A C B.

Find Sy(1) and Sy(2).

Prove that Sy(n) has exactly 3" elements.

Prove that (4,B) € Su(n) if and only if (4%, B®) € Sn(n) (here [n] is the universal set).
Therefore find the number of elements in Sn(n).

Prove that (4,B) € Sy(n) if and only if (A%, B) € Sc(n) (here [n] is the universal set).
Therefore find the number of elements in Sc(n).

We get,
Su(1) = {({1},9), ©@.{1}), ({1},{1})}

and

Su@) = {{1,2},0), 0,{1,2}), ({1,2},{1}), {1}, {1,2}), ({12}, {2}),
(12}, {1,2), ({1,2},{1,2}), ({1}, {2}), ({2}, 1}

We count how many ways there are to construct sets A and B so that AU B =
{1,2,...,n}. To get this union, we need each number from 1 to n to either be in
A, or in B, or in both. So we have three possibilities for each of the n numbers from 1
to n. Since these choices are all independent, there are 3-3-...-3 = 3" such ordered
pairs (A, B).
First assume that (A, B) € Sy(n). Then AU B = [n], so by De Morgan’s Law (page
272, #9(a)),
AN B =(AUB)*=[n]*=0,

therefore (A¢, B) € Sn(n).
Conversely, assume that (A¢, B¢) € Sn(n). Then A°N B¢ = (), so by various properties
on page 272,

AUB — (AC)Cu(BC)C: (AcmBC)c - mc: ['ﬂ],
therefore (A, B) € Su(n).
This means that there is a one-to-one correspondence between the elements of Sy(n)
and the elements of Sn(n), so by part (b) Sn(n) must also have 3" elements.
First assume that (A, B) € Sy(n), which means AU B = [n]. We want to prove that
(A€, B) € Sc(n), which means we want to prove that A° C B. Let z € A® be arbitrary.

This means that = € [r] but © ¢ A. Since AU B = [n], ¥ € [n] means v € AU B, and
since z € A we conclude that = € B. Therefore A° C B and (A%, B) € Sc(n).
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Conversely, assume that (A, B) € Sc(n), which means A° C B. We want to prove that
(A, B) € S,(n), which means we want to prove that AU B = [n]. Since AUB C [n], we
only need to prove that [n] € AUB. Let © € [r] be arbitrary. If z € A, thenz € AUB
which is what we want. On the other hand, if z € A, then z € A°, and since A° C B,
this means that z € B and thus z € AU B. So in either case we get that z € AU B.
Therefore [n]| C AU B, so AU B = [n], so (A, B) € Su(n).

Once again this means that there is a one-to-one correspondence between the elements
of Sy(n) and the elements of Sc(n), so by part (b) Sc(n) must also have 3" elements.

2. For each positive integer n, let f(n) be the number of ordered pairs (A, B) of subsets of {1,2,3,...,n}
so that AU B has an even number of elements.

(a)
(b)

Find f(1) and f(2) by listing all the ordered pairs of subsets.

Use Problem 1(b) to prove that for any n,

[n/2] i\
fln) = Z (Qk)Sﬂk'

k=0
Show that your answers to part (a) agree with this formula.

Mimic Example 6.7.4 on page 368 to prove that Y i (7)3* = 4" and thus

(%”’_ 1)3%“1 = 4" — f(n).

Use Pascal’s Formula (page 360), (b) and (c), and mathematical induction to prove that

[(n+1)/2]

k=1

on—Llon _ 1) if n is odd,
fn) = { 2“'"LE.‘Z“ + 1; if n is even.
Since A and B are subsets of {1,2,...,n}, we always have AU B C {1,2,...,n}. So
when n = 1, the only way for AU B to have an even number of elements is if AUB = (),
so the only ordered pair (A, B) that works is (@, 0), and thus f(1) = 1. When n = 2,
we could have AU B =0 or AU B = {1,2}, so the ordered pairs (A, B) that work are
(0, 0) plus the nine ordered pairs in S§,(2) from problem 1(a). Thus f(2) = 10.
First, from problem 1(b) it is clear that for any set S with m elements there must be
exactly 3™ ordered pairs (A, B) of sets so that AU B = S (since the names of the
m elements of S don’t matter). Let k be an integer so that 0 < 24 < n. There are
(;l) subsets of {1,2,...,n} with 2k elements, and for each of these subsets there are
3% ordered pairs (A, B) of sets whose union is that subset. Thus for each k, there are
(.;k) 3% ordered pairs (A, B) of subsets of {1,2,...,n} so that AU B has 2k elements.
Adding over all possible values of & (namely & =0,1,..., |n/2]), we get that

2l gy
)= 3 ()%

k=0



When n = 1 this says

- (2 - (o (10

both agrecing with part (a).

(¢) We put @ = 1 and b = 3 into the Binomial Theorem (Theorem 6.7.1 on page 364) to

get
Z (?’l) 31' i z (?:) 1'n—13i — (1 s 3)'”. — 4!1'..

i=0 \* i=0
Splitting this sum into two parts, one with all the even ¢’s and one with all the odd i’s,

we get
/2] I e
Z (21;)3 3 Z (2;—:-1)3 =

But the first sum is just f(n) by part (h), so subtracting it from both sides gives us

[(n+1)/2]

D, (2;{;”_ 1)3%_1 =4" — f(n)

k=1

as required.
(d) Basis step. When n = 1 (which is odd) the formula says f(1) = 2°(2! — 1) = 1, which
is correct by part (a).

Inductive step. Assume that the formula is correct for some integer n > 1. We want to
prove it is correct for the next integer n + 1. Well,

I

n—!—l /2]
1 !
fln+1) (n i )3”‘ by part (b)

L(n+l)f 2 i ”
[ ¥ ! -t P qes N ¥ 5
[(2#) 23 (QL _ 1)] 3 oy Pascal’s Formula

foess
[n/2] [(n+1)/2]
ir n 2k n 9 . q2k-1
= & (2&:)3 - 2, (2;&:—1)5 2

:n) +3(4" — f(n)) by parts (b) and (c)

(4”) 9”(2’”' —1) ifnis odd
(4") —2"(2" + 1) if n is even
(4") 42" =27 (2" + 1) ifn+1is even
(47) — 2m = gn(gntl _ 1) ifn+11is odd,

by assumption
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which completes the inductive step. Therefore the formula is correct for all integers
n > 1.

Note: If n is odd, and if 2" — 1 happens to be a prime number, then the value f(n) =
2n=1(9n — 1) is what is called a perfect number. To find out what these are, ask your
professor or TA, or search the internet.

3. Again let [n] = {1,2,3,...,n} for any positive integer n.

(a)
(b)
(c)
(d)

(a)

(b)

(c)

Find the number of functions f : [n] — [r] such that f(k) < k& Vk € [n].

Find the number of one-to-one functions f : [r] — [n] such that f(k) <k V& € [n].
Find the number of functions f : [n] — [n] such that f(k) < k+1Vk € [n].

Find the number of onto functions f : [n] — [n] such that f(k) < k+ 1 VE € [n].

Since, for every k, f(k) must be one of the k values 1,2, ..., k, there is one choice for
f(1) (namely 1), two choices for f(2) (namely 1 or 2), and so on up to n choices for f(n)
(namely any of 1,2,...,n). Thus by the Multiplication Rule there are 1-2-...-n = n!
ways to assign all the values f(1), f(2),..., f(n), that is, n! different functions.

If f must be one-to-one, then we still must assign f(1) = 1, but then we cannot assign
f(2) to be 1 too, so we must put f(2) = 2. Next we cannot let f(3) be 1 or 2, so we
must put f(3) = 3. Continuing in this way, we are forced to put f(k) = k for each k,
so there is just one one-to-one function f : [n] — [n], namely the identity function.

Proceeding as in part (a), for each k&, f(k) must be one of the k+1 choices 1,2, ..., k+1,
provided that & < n. So f(1) can be 1 or 2, f(2) can be 1, 2 or 3, and so on up to
f(n — 1) which can be any of 1,2,...,n. But f(n) must still belong to [n] so there are
only n choices for f(n). Thus by the Multiplication Rule the total number of functions
is2-3-...-n'n= 1’1(1’1!)

Note that since [n] is finite, a function f : [n] — [n] is onto if and only if it is one-to-one.
So we are really just counting one-to-one functions again. Now f(1) must be 1 or 2,
so there are two choices for f(1). Then f(2) must be 1, 2 or 3, so removing whichever
choice we made for f(1) will leave two choices for f(2). In general there will be & + 1
choices for f(k) (namely 1,2,...,k + 1), but after we remove the choices we make for
f(1), f(2),..., f(k—1) we will always have exactly two choices left for f(% +1). The
exception again is that for f(n) there are only n choices originally (namely 1,2,...,n),
and after we remove the choices we make for f(1), f(2),..., f(n — 1) we will only have

one choice left for f(n). So in total there will be 2-2....-2-1= 211—1 onto functions.



