THE UNIVERSITY OF CALGARY
 FACULTY OF SCIENCE
 MATHEMATICS 271
 FINAL EXAMINATION, WINTER 2006
 TIME: 3 HOURS

NAME \qquad ID Section

1	
2	
3	
4	
5	
6	
7	
8	
9	
Total (max. 80)	

SHOW ALL WORK. NO CALCULATORS PLEASE.
THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.
[8] 1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(104,81)$. Also use the algorithm to find integers x and y such that $\operatorname{gcd}(104,81)=104 x+81 y$.
(b) Use part (a) to find an inverse for 81 modulo 104.
[12] 2. Let \mathbf{Z} be the set of all integers, and let \mathcal{S} be the statement "For all subsets A and B of \mathbf{Z}, if $5 \in A-B$ or $5 \in B-A$ then $5 \notin A \cap B$." (a) Is \mathcal{S} true? Give a proof or disproof.
(b) Write out the contrapositive of \mathcal{S}, and give a proof or disproof.
(c) Write out the converse of \mathcal{S}, and give a proof or disproof.
[11] 3. Let \mathbf{N} be the set of all positive integers, and define the relation R on \mathbf{N} by: for any $x, y \in \mathbf{N}, x R y$ if and only if $\operatorname{gcd}(x, y)>1$.
(a) Is R reflexive? Symmetric? Transitive? Give reasons.
(b) Is R an equivalence relation? Explain.
(c) Prove or disprove: $\forall x \in \mathbf{N} \exists y \in \mathbf{N}$ so that $x R y$.
(d) Prove or disprove: $\forall x \in \mathbf{N} \exists y \in \mathbf{N}$ so that $x \not R y$ (that is, x is not related to y).
[9] 4. Let $A=\{1,2, \ldots, 10\}$, and let \mathcal{F} be the set of all functions $f: A \rightarrow A$. Define a relation R on \mathcal{F} by:
for all $f, g \in \mathcal{F}, f R g$ if and only if there exists some $i \in A$ so that $f(i)=g(i)$.
(a) Is R transitive? Explain.
(b) Let $g \in \mathcal{F}$ be defined by $g(i)=1$ for all $i \in A$. Find the number of functions $f \in \mathcal{F}$ so that $f R g$.
(c) How many of the functions f in part (b) are one-to-one? Explain.
[5] 5. If A is a finite set, $N(A)$ denotes the number of elements in A. Let $X=\{1,2, \ldots, 271\}$, and let $\mathcal{P}(X)$ denote the power set of X. One of the following two statements is true and one is false. Prove the true statement and disprove the false statement.
(a) $\exists A \in \mathcal{P}(X)$ so that $\forall B \in \mathcal{P}(X), N(A \cup B)$ is even.
(b) $\exists A \in \mathcal{P}(X)$ so that $\forall B \in \mathcal{P}(X), N(A \cup B)$ is odd.
[6] 6. Suppose that A and B are sets, and that $(1,2)$ and $(2,3)$ are elements of $A \times B$. Find the smallest possible number of elements in (a) $A \times B$; (b) $A \cap B$; (c) $A-B$.
[13] 7. Let $\mathcal{B}_{\leq 10}$ denote the set of all binary strings (sequences of 0 's and 1 's) of length at most 10. Define the relation R on $\mathcal{B}_{\leq 10}$ by:
for all $s, t \in \mathcal{B}_{\leq 10}$, sRt if and only if the number of 1 's in s equals the number of 1 's in t. (a) Prove that R is an equivalence relation on $\mathcal{B}_{\leq 10}$.
(b) Find three elements of $\mathcal{B}_{\leq 10}$ belonging to the equivalence class [101].
(c) Find the number of strings of length 6 in [101]. Simplify your answer.
(d) Find the number of distinct equivalence classes of R.
[9] 8. Let G be the graph

(a) Find the adjacency matrix M of G.
(b) Use the matrix M to find the number of walks in G of length 2 between v_{1} and v_{3}.
(c) Does G have a Eulerian circuit? Explain.
(d) Does G have a Hamiltonian circuit? Explain.
[7] 9. Prove by mathematical induction that $4 \mid\left(9^{n}-1\right)$ for all integers $n \geq 0$.

