THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE MATHEMATICS 271 FINAL EXAMINATION, WINTER 2007 TIME: 3 HOURS

$\mathbf{N} \mathbf{A} \mathbf{V} \mathbf{\Gamma} \mathbf{\Gamma}$
--

_ID_____Section_____

1	
2	
3	
4	
5	
6	
7	
8	
9	
Total (max. 80)	

SHOW ALL WORK. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROB-LEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.

1

[8] 1. (a) Use the Euclidean algorithm to find gcd(78, 41). Also use the algorithm to find integers x and y such that gcd(78, 41) = 78x + 41y.

(b) Use part (a) to find an inverse for 41 modulo 78; that is, find an integer $a \in \{0, 1, ..., 77\}$ so that $41a \equiv 1 \mod 78$.

[11] 2. Let G be the graph with vertices $\{0, 1, 2, 3, 4, 5\}$ and edges defined by: for all $a, b \in \{0, 1, 2, 3, 4, 5\}$, a and b are adjacent if and only if a + b is odd. (a) Draw the graph G.

(b) Is G a complete graph? Explain.

(c) Is G a complete bipartite graph? Explain.

(d) Does G have a Hamiltonian circuit? Explain.

[9] 3. Let \mathbb{Z}^+ be the set of all positive integers, and define the relation \mathcal{R} on $\mathcal{P}(\mathbb{Z}^+)$ (the power set of \mathbb{Z}^+) by:

for any subsets A, B of \mathbb{Z}^+ , $A\mathcal{R}B$ if and only if $B \subseteq A$. (a) Is \mathcal{R} reflexive? Symmetric? Transitive? Give reasons.

(b) Suppose that $A = \{1, 2, 3, ..., 271\}$. Find the number of sets $B \in \mathcal{P}(\mathbb{Z}^+)$ such that $A\mathcal{R}B$. Explain.

[12] 4. Let \mathcal{F}_3 denote the set of all functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$.

(a) Find the number of functions $f \in \mathcal{F}_3$ such that f(1) = 3. How many of these are one-to-one? Explain.

(b) Find the number of functions $f \in \mathcal{F}_3$ such that $(f \circ f)(1) = 3$.

(c) Find two functions f and g in \mathcal{F}_3 so that f is one-to-one, g is onto, and $(f \circ g)(1) = 3$.

(d) Find the number of ordered pairs (f, g) of functions in \mathcal{F}_3 so that $(f \circ g)(1) = 3$.

[12] 5. (a) Prove or disprove:

(i) For all sets A and B, if $A \subseteq B \cup \{1, 2, 3\}$ then $A - \{1, 2, 3\} \subseteq B$.

(ii) For all sets A and B, if $A \cup \{1, 2, 3\} \subseteq B$ then $A \subseteq B - \{1, 2, 3\}$.

(iii) For all sets A and B, if $A \subseteq B - \{1, 2, 3\}$ then $A \cup \{1, 2, 3\} \subseteq B$.

(b) Write out (as simply as possible) the *negation* of the statement in (a) part (iii) above.

- [6] 6. Prove or disprove:
- (a) $\forall a \in \mathbb{Z} \exists b \in \mathbb{Z}$ such that a + b is prime.

(b) $\exists b \in \mathbb{Z}$ such that $\forall a \in \mathbb{Z}, a + b$ is prime.

[5] 7. (a) Let n be a positive integer. For integers a and b, define what $a \equiv b \mod n$ means.

(b) For each positive integer n, we know that the relation $\equiv \mod n$ defined in part (a) is an equivalence relation on \mathbb{Z} . Suppose that n is a positive integer such that 9 and 19 are in the same equivalence class of $\equiv \mod n$. Find all possible values of n. Explain. [9] 8. Suppose a graph G has exactly five vertices a, b, c, d, e and has adjacency matrix

0	1	1	0	17	
1	0	1 1 0 1 1	0	1	
1	1	0	1	1	
0	0	1	0	0	
1	1	1	0	0	

(a) Draw the graph G.

(b) How many subgraphs does G have with exactly two vertices? Explain. Simplify your answer.

(c) Draw a graph H with six vertices a, b, c, d, e, f so that H has an Euler circuit and so that G is a subgraph of H. Explain.

(d) Draw a **tree** with five vertices a, b, c, d, e which is a subgraph of G.

[8] 9. Let \mathcal{S} be the statement

$$\frac{1!}{2^1} + \frac{2!}{2^2} + \dots + \frac{n!}{2^n} \le \frac{(n+1)!}{2^{n+1}} \; .$$

(a) Show that S is true when n = 1 but is **false** when n = 2.

(b) Prove by mathematical induction that S is true for all integers $n \ge 4$.