THE UNIVERSITY OF CALGARY
 FACULTY OF SCIENCE
 MATHEMATICS 271
 FINAL EXAMINATION, WINTER 2007
 TIME: 3 HOURS

NAME \qquad ID Section

1	
2	
3	
4	
5	
6	
7	
8	
9	
Total (max. 80)	

SHOW ALL WORK. NO CALCULATORS PLEASE.
THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.
[8] 1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(78,41)$. Also use the algorithm to find integers x and y such that $\operatorname{gcd}(78,41)=78 x+41 y$.
(b) Use part (a) to find an inverse for 41 modulo 78; that is, find an integer $a \in\{0,1, \ldots, 77\}$ so that $41 a \equiv 1 \bmod 78$.
[11] 2. Let G be the graph with vertices $\{0,1,2,3,4,5\}$ and edges defined by: for all $a, b \in\{0,1,2,3,4,5\}, a$ and b are adjacent if and only if $a+b$ is odd.
(a) Draw the graph G.
(b) Is G a complete graph? Explain.
(c) Is G a complete bipartite graph? Explain.
(d) Does G have a Hamiltonian circuit? Explain.
[9] 3. Let \mathbb{Z}^{+}be the set of all positive integers, and define the relation \mathcal{R} on $\mathcal{P}\left(\mathbb{Z}^{+}\right)$(the power set of \mathbb{Z}^{+}) by:
for any subsets A, B of $\mathbb{Z}^{+}, A \mathcal{R} B$ if and only if $B \subseteq A$.
(a) Is \mathcal{R} reflexive? Symmetric? Transitive? Give reasons.
(b) Suppose that $A=\{1,2,3, \ldots, 271\}$. Find the number of sets $B \in \mathcal{P}\left(\mathbb{Z}^{+}\right)$such that $A \mathcal{R} B$. Explain.
[12] 4. Let \mathcal{F}_{3} denote the set of all functions from $\{1,2,3\}$ to $\{1,2,3\}$.
(a) Find the number of functions $f \in \mathcal{F}_{3}$ such that $f(1)=3$. How many of these are one-to-one? Explain.
(b) Find the number of functions $f \in \mathcal{F}_{3}$ such that $(f \circ f)(1)=3$.
(c) Find two functions f and g in \mathcal{F}_{3} so that f is one-to-one, g is onto, and $(f \circ g)(1)=3$.
(d) Find the number of ordered pairs (f, g) of functions in \mathcal{F}_{3} so that $(f \circ g)(1)=3$.
[12] 5. (a) Prove or disprove:
(i) For all sets A and B, if $A \subseteq B \cup\{1,2,3\}$ then $A-\{1,2,3\} \subseteq B$.
(ii) For all sets A and B, if $A \cup\{1,2,3\} \subseteq B$ then $A \subseteq B-\{1,2,3\}$.
(iii) For all sets A and B, if $A \subseteq B-\{1,2,3\}$ then $A \cup\{1,2,3\} \subseteq B$.
(b) Write out (as simply as possible) the negation of the statement in (a) part (iii) above.
[6] 6. Prove or disprove:
(a) $\forall a \in \mathbb{Z} \exists b \in \mathbb{Z}$ such that $a+b$ is prime.
(b) $\exists b \in \mathbb{Z}$ such that $\forall a \in \mathbb{Z}, a+b$ is prime.
[5] 7. (a) Let n be a positive integer. For integers a and b, define what $a \equiv b \bmod n$ means.
(b) For each positive integer n, we know that the relation $\equiv \bmod n$ defined in part (a) is an equivalence relation on \mathbb{Z}. Suppose that n is a positive integer such that 9 and 19 are in the same equivalence class of $\equiv \bmod n$. Find all possible values of n. Explain.
[9] 8. Suppose a graph G has exactly five vertices a, b, c, d, e and has adjacency matrix

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right] .
$$

(a) Draw the graph G.
(b) How many subgraphs does G have with exactly two vertices? Explain. Simplify your answer.
(c) Draw a graph H with six vertices a, b, c, d, e, f so that H has an Euler circuit and so that G is a subgraph of H. Explain.
(d) Draw a tree with five vertices a, b, c, d, e which is a subgraph of G.
[8] 9 . Let \mathcal{S} be the statement

$$
\frac{1!}{2^{1}}+\frac{2!}{2^{2}}+\cdots+\frac{n!}{2^{n}} \leq \frac{(n+1)!}{2^{n+1}} .
$$

(a) Show that \mathcal{S} is true when $n=1$ but is false when $n=2$.
(b) Prove by mathematical induction that \mathcal{S} is true for all integers $n \geq 4$.

