MATHEMATICS 271 WINTER 2010 MIDTERM SOLUTIONS

[6] 1. Use the Euclidean algorithm to find $\operatorname{gcd}(105,17)$. Then use your work to write $\operatorname{gcd}(105,17)$ in the form $105 a+17 b$ where a and b are integers.
Solution: We have

$$
\begin{array}{cl}
105 & =6 \times 17+3 \\
17 & =5 \times 3+2 \\
3 & =1 \times 2+1 \\
2 & =2 \times 1+0
\end{array}
$$

and so $\operatorname{gcd}(105,17)=1$, and
$\operatorname{gcd}(105,17)=1=3-2=3-(17-5 \times 3)=6 \times 3-17=6 \times(105-6 \times 17)-17=$ $6 \times 105-37 \times 17$.

Another way is to use the "table method" as follows.

		105	17
	105	1	0
	17	0	1
$R_{1}-6 R_{2}$	3	1	-6
$R_{2}-5 R_{3}$	2	-5	31
$R_{3}-R_{4}$	1	6	-37

Thus, $\operatorname{gcd}(105,17)=1$ and $\operatorname{gcd}(105,17)=105 \times 6+17 \times(-37)$.
2. Let $X=\{1,2,3,4\}$.
[3] (a) Find two subsets A and B of X so that $A-B \neq \emptyset$ but B has more elements than A does. Be sure to explain your answer.
Solution: Let $A=\{1\}$ and $B=\{2,3\}$. Then A and B are subsets of X, and B has more elements than A does, but $A-B=\{1\} \neq \emptyset$.
[3] (b) Find an element of $X \times \mathcal{P}(X)$, where $\mathcal{P}(X)$ is the power set of X. Explain.
Solution: An element of $X \times \mathcal{P}(X)$ is the ordered pair $(1, \emptyset)$. This is because $1 \in X$ and $\emptyset \in \mathcal{P}(X)$ (since $\emptyset \subseteq X$). Another solution is $(1,\{2\})$.
3. One of the following statements is true and one is false. Prove the true statement. Write out the negation of the false statement and prove that. (\mathbb{Z}^{+}is the set of all positive integers.)
[5] (a) For all $a, b \in \mathbb{Z}^{+}$, if a is composite and $a \mid b$ then b is composite.
Solution: This is true and here is a proof. Let $a, b \in \mathbb{Z}^{+}$and suppose that a is composite and that $a \mid b$. Since a is composite, there exist positive integers $r>1$ and $s>1$ such that $a=r$ s. Since $a \mid b$, there is an integer k such that $b=a k$. Since $b=a k$ and a and b are positive, we see that k is also positive. Now, $b=a k=r s k$ where $r>1$ and $s k>1$ are integers $(s k>1$ because $s>1$ and $k \geq 1)$. It follows that b is composite.
[4] (b) For all $a, b \in \mathbb{Z}^{+}$, if a is prime and $b \mid a$ then b is prime.
Solution: This statement is false. Its negation is "There exist $a, b \in \mathbb{Z}^{+}$such that a is prime and $b \mid a$, but b is not prime."

For example, let $a=2$ and $b=1$. Then $a, b \in \mathbb{Z}^{+}, a$ is prime and $b \mid a$ (because $a=b \times 2$ and $2 \in \mathbb{Z}$). However, $b=1$ is not prime.
4. Let \mathcal{S} be the statement:
for all sets A, B and C, if $A \cap B=\emptyset$ and $C \subseteq B$ then $A \cap C=\emptyset$.
[4] (a) Prove \mathcal{S}, using contradiction and the element method.
Solution: Let A, B and C be sets such that $A \cap B=\emptyset$ and $C \subseteq B$. We prove that $A \cap C=\emptyset$ by contradiction. Suppose that $A \cap C \neq \emptyset$, that is, there exists an element $x \in A \cap C$. Since $x \in A \cap C$, we know $x \in A$ and $x \in C$. Since $x \in C$ and $C \subseteq B$, we get $x \in B$. Since $x \in A$ and $x \in B$, we get $x \in A \cap B$. Thus, there exists $x \in A \cap B$ and hence, $A \cap B \neq \emptyset$ which contradicts the assumption that $A \cap B=\emptyset$. Therefore, $A \cap C=\emptyset$.
[4] (b) Write out (as simply as possible) the converse of statement \mathcal{S}. Is it true or false? Explain.
Solution: This converse of \mathcal{S} is: "For all sets A, B and C, if $A \cap C=\emptyset$ then $A \cap B=\emptyset$ and $C \subseteq B$."

The converse of \mathcal{S} is false. We are to prove its negation which is: " There exist sets A, B and C such that $A \cap C=\emptyset$, but $A \cap B \neq \emptyset$ or $C \nsubseteq B$." For example, let $A=B=\emptyset$ and $C=\{1\}$. Then $A \cap C=\emptyset \cap C=\emptyset$, and $C \nsubseteq B$ because $1 \in C$ but $1 \notin B$.
[3] (c) Write out (as simply as possible) the contrapositive of statement \mathcal{S}. Is it true or false? Explain.
Solution: This contrapositive of \mathcal{S} is: "For all sets A, B and C, if $A \cap C \neq \emptyset$ then $A \cap B \neq \emptyset$ or $C \nsubseteq B$."

The contrapositive of \mathcal{S} is true because it is logically equivalent to \mathcal{S} which is true by part (a).
[8] 6. Prove using mathematical induction (or well ordering) that

$$
\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\ldots+\frac{n}{n+2} \geq \frac{n}{3}
$$

for all integers $n \geq 1$.
Solution: Note that $\frac{\overline{1}}{3}+\frac{2}{4}+\frac{3}{5}+\ldots+\frac{n}{n+2}=\sum_{i=1}^{n} \frac{i}{i+2}$. We now prove that $\sum_{i=1}^{n} \frac{i}{i+2} \geq \frac{n}{3}$ for all integers $n \geq 1$ using mathematical induction on n.
Basis step: $(n=1)$
We have $\sum_{i=1}^{1} \frac{i}{i+2}=\frac{1}{1+2}=\frac{1}{3} \geq \frac{1}{3}$. Thus, the statement is true for the case $n=1$.

Inductive step: Let $k \geq 1$ be an integer and suppose that $\sum_{i=1}^{k} \frac{i}{i+2} \geq \frac{k}{3}$. We want to show that $\sum_{i=1}^{k+1} \frac{i}{i+2} \geq \frac{k+1}{3}$.

Now,

$$
\begin{array}{rlrl}
\sum_{i=1}^{k+1} \frac{i}{i+2} & =\sum_{i=1}^{k} \frac{i}{i+2}+\frac{k+1}{k+3} & \\
& \geq \frac{k}{3}+\frac{k+1}{k+3} & & \\
& =\frac{k(k+3)+3(k+1)}{3(k+3)} & & \\
& =\frac{k^{2}+3 k+3 k+3}{3(k+3)} & & \\
& =\frac{k^{2}+6 k+3}{3(k+3)} & & \\
& >\frac{k^{2}+4 k+3}{3(k+3)} & & \\
& =\frac{(k+1)(k+3)}{3(k+3)} & & \\
& =\frac{(k+1)}{3} & &
\end{array}
$$

Thus, we proved the inductive step.
Therefore, by the Principle of Mathematical Induction, we conclude that

$$
\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\ldots+\frac{n}{n+2} \geq \frac{n}{3} \text { for all integers } n \geq 1
$$

