MATHEMATICS 271 WINTER 2006 MIDTERM SOLUTION

1. Use the Euclidean algorithm to find gcd $(106,20)$.

Solution: From

$106=5 \times 20+6$
$20=3 \times 6+2$
$6=3 \times 2+0$
and by Lemma 3.8.2, we have $\operatorname{gcd}(106,20)=\operatorname{gcd}(20,6)=\operatorname{gcd}(6,2)=\operatorname{gcd}(2,0)=2$.
2. Let \mathcal{S} be the following statement: "For all integers n, if $3 n+7$ is even then n is odd."
(a) Prove statement \mathcal{S}. Use contradiction or the contrapositive. You may assume that every integer is either even or odd but not both, but otherwise use only the definitions of even and odd.

Solution:

Let n be an integer such that $3 n+7$ is even. We prove that n is odd by contradiction. Suppose that n is not odd, that is, we suppose that n is even. Since n is even, there is an integer k such that $n=2 k$, and hence, $3 n+7=3(2 k)+7=2(3 k+3)+1$ (where $3 k+3$ is an integer) which implies that $3 n+7$ is odd. This contradicts the assumption that $3 n+7$ is even. Thus, n is odd.
(b) Write out (as simply as possible) the negation of the statement \mathcal{S}.

Solution: The negation of the statement \mathcal{S} is: "There exists an integer n so that $3 n+7$ is even but n is even."
3. Let \mathcal{S} be the statement:

$$
\text { for all sets } A, B, C \text {, if } A \cap B \neq \emptyset \text { and } A \cap C \neq \emptyset \text { then } B \cap C \neq \emptyset \text {. }
$$

(a) Is \mathcal{S} true? Give a proof or disproof.

Solution: \mathcal{S} is not true. For example, when $A=\{1,2\}, B=\{1\}$ and $C=\{2\}$, we see that $A \cap B=\{1\} \neq \emptyset$ and $A \cap C=\{2\} \neq \emptyset$ but $B \cap C=\emptyset$.
(b) Write out (as simply as possible) the converse of the statement \mathcal{S}, and give a proof or disproof.

Solution: The converse of the statement \mathcal{S} is: "For all sets A, B, C, if $B \cap C \neq \emptyset$ then $A \cap B \neq \emptyset$ and $A \cap C \neq \emptyset . "$.
The converse of \mathcal{S} is false. For example, when $A=\emptyset$, and $B=C=\{1\}$, we have $B \cap C=\{1\} \neq \emptyset$, but $A \cap B=A \cap C=\emptyset$.
(c) Write out (as simply as possible) the contrapositive of the statement \mathcal{S}, and give a proof or disproof.
Solution: The contrapositive of the statement \mathcal{S} is: "For all sets A, B, C, if $B \cap C=\emptyset$ then $A \cap B=\emptyset$ or $A \cap C=\emptyset$." The contrapositive of \mathcal{S} is false because it is logically equivalent to \mathcal{S} which is false as seen in (a).
4. Of the following two statements, one is true and one is false. Prove the true statement and disprove the false statement. (\mathbb{Z} denotes the set of all integers.)
(a) $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}$ so that $3 \mid(n+m)$.

Solution: This statement is true and here is a proof. Let $n \in \mathbb{Z}$. Choose $m=-n$. Then $m \in \mathbb{Z}$ and $n+m=0=3 \times 0$, so $3 \mid(n+m)$.
(b) $\exists n \in \mathbb{Z}$ so that $\forall m \in \mathbb{Z}, 3 \mid(n+m)$.

Solution: This statement is false and we prove the negation of the statement; that is, we prove that $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}$ so that $3 \nmid(n+m)$. Let $n \in \mathbb{Z}$. Choose $m=1-n$. Then $m \in \mathbb{Z}$ and $n+m=1$, and since $3 \nmid 1$ see that $3 \nmid(n+m)$.
5. Of the following two statements, one is true and one is false. Prove the true statement and disprove the false statement.
(a) For all sets A and B, if $(1,2) \in A \times B$ and $(1,3) \in A \times B$ then $(2,3) \in A \times B$.

Solution: This statement is false because when $A=\{1\}$ and $B=\{2,3\}$, we have $A \times B=\{(1,2),(1,3)\}$, and therefore $(1,2) \in A \times B$ and $(1,3) \in A \times B$ but $(2,3) \notin A \times B$.
(b) For all sets A and B, if $(1,2) \in A \times B$ and $(2,3) \in A \times B$ then $(1,3) \in A \times B$.

Solution: This statement is true and here is a proof. Let A and B be sets so that $(1,2) \in A \times B$ and $(2,3) \in A \times B$. Since $(1,2) \in A \times B$, we get $1 \in A$, and since $(2,3) \in A \times B$, we get $3 \in B$. Then, from $1 \in A$ and $3 \in B$, we get $(1,3) \in A \times B$.
6. Prove using mathematical induction that $2 n-1<3^{n}$ for all integers $n \geq 1$.

Solution:

Basis $(n=1)$: When $n=1$, we have $2 n-1=1<3=3^{1}=3^{n}$.
Inductive Step: Let $k \geq 1$ be an integer and suppose that

$$
2 k-1<3^{k} . \quad[I H]
$$

We want to prove that $2(k+1)-1<3^{k+1}$.
Now,

$$
\begin{aligned}
2(k+1)-1 & =2 k-1+2 & & \\
& <3^{k}+2 & & \text { by }[I H] \\
& <3^{k}+3^{k} & & \text { because } 2<3^{k} \text { when } k \geq 1 \\
& <3^{k}+3^{k}+3^{k} & & \text { because } 3^{k}>0 \\
& =3 \times 3^{k} & & \\
& =3^{k+1} . & &
\end{aligned}
$$

Hence, we proved that $2(k+1)-1<3^{k+1}$, and by the Principle of Mathematical Induction we conclude that $2 n-1<3^{n}$ for all integers $n \geq 1$.

