THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE MATHEMATICS 271 (L01) FINAL EXAMINATION, FALL 2009 TIME: 3 HOURS

NAME_____

_____ID____Section____

1	
1	
2	
3	
· · · · ·	
4	
5	
C	
6	
7	
8	
9	
10	
Total	
$(\max. 80)$	

SHOW ALL WORK. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROB-LEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 10 PAGES INCLUDING THIS ONE. [8] 1. (a) Use the Euclidean algorithm to find gcd(98, 31). Also use the algorithm to find integers x and y such that gcd(98, 31) = 98x + 31y.

(b) Use part (a) to find an inverse *a* for 31 modulo 98 so that $0 \le a \le 97$; that is, find an integer $a \in \{0, 1, \dots, 97\}$ so that $31a \equiv 1 \pmod{98}$.

[11] 2. \mathbb{R} is the set of all real numbers. Let S be the statement:

 $\forall a \in \mathbb{R}$, if a is rational then $a + \sqrt{2}$ is irrational.

(a) Prove that S is true. You may use that $\sqrt{2}$ is irrational and that the sum and difference of rational numbers is rational.

(b) Write out the *converse* of statement S. Is it true or false? Explain.

(c) Write out the *contrapositive* of statement S. Is it true or false? Explain.

[12] 3. Let $S = \{1, 2, 3, 4, 5, 6\}$, and define the relation \mathcal{R} on the power set $\mathcal{P}(S)$ of all subsets of S by:

for all $A, B \in \mathcal{P}(S)$, $A\mathcal{R}B$ if and only if $1 \in A \cap B$.

(a) Is \mathcal{R} reflexive? Symmetric? Transitive? Give reasons.

(b) Find the number of sets $B \in \mathcal{P}(S)$ so that $\{1\}\mathcal{R}B$.

(c) Find the number of sets $B \in \mathcal{P}(S)$ which have exactly three elements and so that $\{1\}\mathcal{R}B$. Simplify your answer.

[9] 4. Let \mathcal{F} denote the set of all functions from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4\}$. (a) Find the number of functions $f \in \mathcal{F}$ so that f(1) = f(2).

(b) Find the number of functions $f \in \mathcal{F}$ satisfying: there exists some $x \in \{1, 2, 3, 4, 5\}$ so that f(x) = 1.

(c) Find the number of functions $f \in \mathcal{F}$ satisfying: for all $x \in \{1, 2, 3, 4, 5\}$, f(x) is odd if and only if x is even.

[4] 5. Prove the following statement: for all sets A, B and C, if $B \subseteq C$ then $A \times B \subseteq A \times C$.

[6] 6. (a) *Disprove* the following statement: for all sets A and B, $\mathcal{P}(A) - \mathcal{P}(B) \subseteq \mathcal{P}(A-B)$. (Here $\mathcal{P}(X)$ denotes the power set of the set X.)

(b) Write out the *negation* of the statement in part (a).

[7] 7. Z is the set of all integers. One of the following two statements is true and one is false. Prove the true statement and disprove the false statement.
(a) ∀m ∈ Z ∃n ∈ Z so that m − n = 271.

(b) $\forall m \in \mathbb{Z} \exists n \in \mathbb{Z}$ so that m/n = 271.

[8] 8. Define a relation R on the set Z of all integers by: for all $a, b \in \mathbb{Z}$, aRb if and only if $a^2 = b^2$.

(a) Prove that R is an equivalence relation on \mathbb{Z} .

(b) Find all the elements in the equivalence class [271].

[9] 9. (a) Draw a connected graph with 6 vertices and 8 edges which is not Eulerian. (Explain why it is not Eulerian.)

(b) Draw a tree with 6 vertices so that the degree of every vertex is odd.

(c) Draw a graph whose adjacency matrix is $\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$. (Label the vertices of your graph and explain their connection with the matrix.)

[6] 10. Prove using mathematical induction (or well ordering) that $3 \mid (7^n + 2)$ for all integers $n \geq 0$.