THE UNIVERSITY OF CALGARY
FACULTY OF SCIENCE
MATHEMATICS 271 (L01)
FINAL EXAMINATION, FALL 2009
TIME: 3 HOURS

NAME \qquad ID \qquad Section \qquad

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	
(max. 80)	

SHOW ALL WORK. NO CALCULATORS PLEASE.
THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 10 PAGES INCLUDING THIS ONE.
[8] 1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(98,31)$. Also use the algorithm to find integers x and y such that $\operatorname{gcd}(98,31)=98 x+31 y$.
(b) Use part (a) to find an inverse a for 31 modulo 98 so that $0 \leq a \leq 97$; that is, find an integer $a \in\{0,1, \ldots, 97\}$ so that $31 a \equiv 1 \quad(\bmod 98)$.
[11] $2 . \mathbb{R}$ is the set of all real numbers. Let S be the statement:
$\forall a \in \mathbb{R}$, if a is rational then $a+\sqrt{2}$ is irrational.
(a) Prove that S is true. You may use that $\sqrt{2}$ is irrational and that the sum and difference of rational numbers is rational.
(b) Write out the converse of statement S. Is it true or false? Explain.
(c) Write out the contrapositive of statement S. Is it true or false? Explain.
[12] 3. Let $S=\{1,2,3,4,5,6\}$, and define the relation \mathcal{R} on the power set $\mathcal{P}(S)$ of all subsets of S by: for all $A, B \in \mathcal{P}(S), A \mathcal{R} B$ if and only if $1 \in A \cap B$.
(a) Is \mathcal{R} reflexive? Symmetric? Transitive? Give reasons.
(b) Find the number of sets $B \in \mathcal{P}(S)$ so that $\{1\} \mathcal{R} B$.
(c) Find the number of sets $B \in \mathcal{P}(S)$ which have exactly three elements and so that $\{1\} \mathcal{R} B$. Simplify your answer.
[9] 4. Let \mathcal{F} denote the set of all functions from $\{1,2,3,4,5\}$ to $\{1,2,3,4\}$.
(a) Find the number of functions $f \in \mathcal{F}$ so that $f(1)=f(2)$.
(b) Find the number of functions $f \in \mathcal{F}$ satisfying: there exists some $x \in\{1,2,3,4,5\}$ so that $f(x)=1$.
(c) Find the number of functions $f \in \mathcal{F}$ satisfying: for all $x \in\{1,2,3,4,5\}, f(x)$ is odd if and only if x is even.
[4] 5. Prove the following statement: for all sets A, B and C, if $B \subseteq C$ then $A \times B \subseteq A \times C$.
[6] 6. (a) Disprove the following statement: for all sets A and $B, \mathcal{P}(A)-\mathcal{P}(B) \subseteq \mathcal{P}(A-B)$. (Here $\mathcal{P}(X)$ denotes the power set of the set X.)
(b) Write out the negation of the statement in part (a).
[7] 7. \mathbb{Z} is the set of all integers. One of the following two statements is true and one is false. Prove the true statement and disprove the false statement.
(a) $\forall m \in \mathbb{Z} \exists n \in \mathbb{Z}$ so that $m-n=271$.
(b) $\forall m \in \mathbb{Z} \exists n \in \mathbb{Z}$ so that $m / n=271$.
[8] 8. Define a relation R on the set \mathbb{Z} of all integers by: for all $a, b \in \mathbb{Z}, a R b$ if and only if $a^{2}=b^{2}$.
(a) Prove that R is an equivalence relation on \mathbb{Z}.
(b) Find all the elements in the equivalence class [271].
[9] 9. (a) Draw a connected graph with 6 vertices and 8 edges which is not Eulerian. (Explain why it is not Eulerian.)
(b) Draw a tree with 6 vertices so that the degree of every vertex is odd.
(c) Draw a graph whose adjacency matrix is $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$. (Label the vertices of your graph and explain their connection with the matrix.)
[6] 10. Prove using mathematical induction (or well ordering) that $3 \mid\left(7^{n}+2\right)$ for all integers $n \geq 0$.

