
MATH 271 ASSIGNMENT 1 SOLUTIONS

1. For each true statement below, give a proof. For each false statement below, write out its negation
and prove that. [Hint: you may use Exercise 16, page 147.]

(a) ∀q ∈ Q ∃r ∈ Q so that q + r ∈ Z.

(b) ∀q ∈ Q ∃r ∈ Q so that q + r 6∈ Z.

(c) ∀q ∈ Q ∃r ∈ Q so that qr ∈ Z.

(d) ∀q ∈ Q ∃r ∈ Q so that qr 6∈ Z.

(e) ∀q ∈ Q ∃r ∈ Q so that q + r 6∈ Z and qr ∈ Z.

(a) This statement is true. Here is a proof. Let q be an arbitrary rational number. We
want to find some rational number r so that q+r is an integer. Let r = −q. By Exercise
16, page 147, r is rational. Also, q + r = q + (−q) = 0 which is an integer. Done. �

(b) This statement is true. Here is a proof. Let q be an arbitrary rational number. We
want to find some rational number r so that q + r is not an integer. We do this in two
cases.

Case 1: Suppose that q is not an integer. Then we let r = 0 (which is rational). Then
q + r = q + 0 = q is not an integer, so we are done with this case.

Case 2: Suppose that q is an integer. Then we let r = 1/2 (which is rational). Then
q + r = q + 1

2
is an integer plus 1/2, which is never an integer, so we are done with this

case as well. This finishes the proof of the problem. �

(c) This statement is true. Here is a proof. Let q be an arbitrary rational number. We
want to find some rational number r so that qr is an integer. Let r = 0 (which is
rational). Then qr = q · 0 = 0 which is an integer. Done. �

(d) This statement is false. The negation of this statement is

∃q ∈ Q so that ∀r ∈ Q, qr ∈ Z.

We want to prove the negation, which means that we want to find some rational number
q so that, for all rational numbers r, qr is an integer. An example (in fact the only
example) is q = 0 (which is rational). Then for every rational r (even every real r),
qr = 0 · r = 0 which is an integer. �

Note. You could prove that this statement is true if q is restricted to nonzero rationals.

(e) This statement is false. The negation of this statement is

∃q ∈ Q so that ∀r ∈ Q, q + r ∈ Z or qr 6∈ Z.

We want to prove the negation, which means that we want to find some rational number
q so that, for all rational numbers r, either q + r is an integer or qr is not an integer.
An example is q = 1 (which is rational). Then for every rational r, q + r = 1 + r while
qr = 1 · r = r. So if r is not an integer, then qr = r is not an integer, which is what we
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want. On the other hand, if r is an integer, then q + r = 1 + r is also an integer, which
again is what we want. �

Note. You could also use q = −1. But these are the only values of q for which the
original statement is false. Try to prove that

∀q ∈ Q − {1,−1} ∃r ∈ Q so that q + r 6∈ Z and qr ∈ Z.

If you get a proof, show it to your professor or TA.

2. In this question you may assume without proof that every integer is either even or odd (but not
both) and also that consecutive integers have opposite parity, but otherwise use only the definitions
of even and odd integers.

(a) Prove using contradiction or the contrapositive: ∀a ∈ Z, if a is odd then a/2 6∈ Z.

(b) Write out the converse of the statement in (a). Is it true? Explain.

(c) Let S be the statement: ∀a ∈ Z, if a is odd then ⌊a/2⌋ is odd. If S is true, prove it. If S is
false, write out its negation and prove that.

(d) Prove or disprove: ∀a ∈ Z, if a is odd then ⌊a/2⌋ is odd or ⌈a/2⌉ is odd.

(e) Write out the contrapositive of the statement in (d). Is it true? Explain.

(a) Proof using contradiction. Let a be an arbitrary odd integer. We want to prove that
a/2 is not an integer. So suppose that a/2 is an integer. Then we can write a/2 = k
for some integer k. This means that a = 2k, which means by definition that a is even.
But this contradicts the assumption that a is odd (since no integer can be both odd
and even). Therefore a/2 cannot be an integer. Done. �

Proof using the contrapositive. The contrapositive is: ∀a ∈ Z, if a/2 ∈ Z then a is even.
Let a be an arbitrary integer so that a/2 is an integer. Then a/2 = k for some integer k.
Thus a = 2k, which means by definition that a is even. This proves the contrapositive,
therefore the original statement must be true too. �

(b) The converse is: ∀a ∈ Z, if a/2 6∈ Z then a is odd.

The converse is true. Here is a proof. Let a be an arbitrary integer so that a/2 is not
an integer. We want to prove that a is odd. We again use contradiction. Suppose that
a is not odd, which means (since a is an integer) that a must be even. This means
that a = 2k for some integer k, and so a/2 = k, an integer. But this contradicts the
assumption that a/2 is not an integer. Thus a must be odd. �

Note: we could also write out the contrapositive of the converse and prove it instead.

(c) The statement S is false. The negation of S is S: ∃a ∈ Z so that a is odd and ⌊a/2⌋
is even. Here is a proof of the negation. An example is a = 1, which is an odd integer,
and ⌊a/2⌋ = ⌊1/2⌋ = 0 which is even. �

(d) This statement is true. Here is a proof. Let a be an arbitrary odd integer. Then
a = 2k + 1 for some k ∈ Z. So a/2 = k + 1/2, and since k is an integer this must mean
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that ⌊a/2⌋ = k and ⌈a/2⌉ = k + 1. Since k and k + 1 are consecutive integers, one of
them must be odd. So one of ⌊a/2⌋ and ⌈a/2⌉ must be odd. �

Here is an alternate proof. Let a be an arbitrary odd integer. Then by part (a) of this
question, a/2 is not an integer. Thus a/2 cannot be equal to either ⌊a/2⌋ or ⌈a/2⌉, both
of which must be integers. In fact we get that ⌊a/2⌋ < a/2 < ⌈a/2⌉, where ⌊a/2⌋ and
⌈a/2⌉ must be consecutive integers. Therefore, since consecutive integers have opposite
parity, one of ⌊a/2⌋ and ⌈a/2⌉ must be odd (and the other even). �

(e) The contrapositive is: ∀a ∈ Z, if ⌊a/2⌋ is even and ⌈a/2⌉ is even then a is even. It is
true because it is equivalent to the original statement, which is true.

3. (a) Let N be your U of C ID number. Use the Euclidean algorithm to calculate d = gcd(N, 271).
Then use your calculations to find integers x and y so that Nx + 271y = d.

(b) Suppose a certain student’s ID number M satisfies

gcd(M, 2010) > gcd(M, 271) > 1.

Find all possible values for gcd(M, 2010). Be sure to explain your reasoning. [Note: both 271
and 67 are prime.]

(c) Suppose that the ID number M from part (b) lies between 10020000 and 10030000. Find M .
Be sure to explain your reasoning.

(a) Let’s do it for the hypothetical student number N = 12341234. The Euclidean algorithm
gives:

12341234 = 45539 · 271 + 165 (so 165 = 12341234− 45539 · 271)

271 = 1 · 165 + 106 (so 106 = 271 − 165)

165 = 1 · 106 + 59 (so 59 = 165 − 106)

106 = 1 · 59 + 47 (so 47 = 106 − 59)

59 = 1 · 47 + 12 (so 12 = 59 − 47)

47 = 3 · 12 + 11 (so 11 = 47 − 3 · 12)

12 = 1 · 11 + 1 (so 1 = 12 − 11)

11 = 11 · 1,

so gcd(12341234, 271) = 1, the last nonzero remainder.

Now, starting with the second-last equation above, solving it for the gcd 1, and plugging
in the remainders one by one from the earlier equations, we get:

1 = 12 − 11

= 12 − (47 − 3 · 12) = 4 · 12 − 47

= 4 · (59 − 47) − 47 = 4 · 59 − 5 · 47

= 4 · 59 − 5 · (106 − 59) = 9 · 59 − 5 · 106

= 9 · (165 − 106) − 5 · 106 = 9 · 165 − 14 · 106

= 9 · 165 − 14 · (271 − 165) = 23 · 165 − 14 · 271

= 23 · (12341234− 45539 · 271) − 14 · 271 = 23 · 12341234− 1047411 · 271.
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So x = 23 and y = −1047411 in this case.

We could also use the table method taught in class. Then we would get

row operation 12341234 271 what this row says
12341234 1 0 12341234 = 1 · 12341234 + 0 · 271

271 0 1 271 = 0 · 12341234 + 1 · 271
R1 − 45539R2 165 1 −45539 165 = 1 · 12341234 + (−45539) · 271

R2 − R3 106 −1 45540 106 = (−1) · 12341234 + 45540 · 271
R3 − R4 59 2 −91079 59 = 2 · 12341234 + (−91079) · 271
R4 − R5 47 −3 136619 47 = (−3) · 12341234 + 136619 · 271
R5 − R6 12 5 −227698 12 = 5 · 12341234 + (−227698) · 271

R6 − 3R7 11 −18 819713 11 = (−18) · 12341234 + 819713 · 271
R7 − R8 1 23 −1047411 1 = 23 · 12341234 + (−1047411) · 271

Thus from the last row we see that

gcd(12341234, 271) = 1 = 23 · 12341234 + (−1047411) · 271.

(b) Let gcd(M, 271) = d and gcd(M, 2010) = e. Since d > 1, and d must divide into 271,
and 271 is prime, d must equal 271. Thus M must be a multiple of 271, and also
e > 271. e must also divide into 2010, whose prime factorization is 2010 = 2 · 3 · 5 · 67.
Divisors of 2010 are any products of these factors. We need a product for e which is
bigger than 271, so we need to include 67 and at least one other factor among the factors
2, 3, 5 of 2010. There are five possibilities for e:

67 × 5 = 335, 67 × 3 × 2 = 402, 67 × 5 × 2 = 670,

67 × 5 × 3 = 1005, 67 × 2 × 3 × 5 = 2010.

(c) M must be a multiple of e. M is also a multiple of 271 (which is relatively prime to
any of the choices for e), so M is a multiple of 271e. Trying the five possibilities for e
from part (b), we get:

• if e = 335, then 271e = 90785.

• if e = 402, then 271e = 108942.

• if e = 670, then 271e = 181570.

• if e = 1005, then 271e = 272355.

• if e = 2010, then 271e = 544710.

We also need M to be between 10020000 and 10030000, and the only multiple of any of
the above five numbers that lies in this range is 108942 · 92 = 10022664. (We need only
check that no multiple of 90785 lies in this range, because the other three numbers are
all multiples of 90785.) Therefore the answer is M = 10022664.
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