MATH 271 ASSIGNMENT 3 SOLUTIONS

1. Prove or disprove the following statements. Use the element method (pages 269 and 279).
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)
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(c)
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For all sets A, B and C, AN(B—C)=0if and only if AN B C C.
For all sets A, B and C, if AU(B —C) =10, then AUB C C.
For all sets A, B and C, if AUB C C, then AU (B —C) =0.
For all sets A, B and C, AU(B—C) =0 if and only if AUB C C.

This statement is true. Here is a proof.

First we prove that

if AN(B—-C)=0,then ANBCC.
Assume that AN (B — C) = (. We want to prove that ANB C C. Let x € AN B be
arbitrary. This means that z € A and v € B. We want to prove that x € C. We do
this by contradiction. Suppose that x ¢ C'. Then, since z € B, we get that x € B —C.
But also x € A, so x € AN (B — C). But this is a contradiction since AN (B —C) = .
Therefore x must be in C', so AN B C C.
Second, we prove that

if ANB C C, then AN (B-C)=0.
Assume that AN B C C. We want to prove that AN (B — C) = (), and we also do
this by contradiction (as on page 279). Assume that AN (B — C) # 0, so there is some
element x € AN (B — C). This means € A and x € B — C, which says x € B and
x ¢ C. Sincex € Aand x € B, we get t € AN B. Since AN B C C, this means x € C.
But this contradicts x ¢ C. Therefore AN (B — C') must be empty.

This statement is true. Here is a proof.

Assume that AU (B — C') = (). We want to prove that AU B C C. Choose an arbitrary
element x € AU B. We want to prove that x € C. x € AU B says that either x € A or
r € B. Butifz € A, then z € AU (B — (), which is impossible since AU (B —C') = 0.
So it must be true that x € B. Now if z ¢ C, we would get x € B — C, which is also
impossible since AU (B — C) = (). Thus we know that « € C. Therefore AU B C C.

This statement is false. A counterexample is A = {1}, B = {2}, C = {1,2}. Then
AUB={1,2} CC,but AU(B—-C)={1}ud = {1} #0.

Since (c) is false, this equivalence is false too.

2. In this question, let S = {1,2,3,4}. Explain all answers completely, but you need not simplify your
answers.

(a)
(b)

How many permutations of the power set Z(S) are there?

How many permutations of &?(S) are there, so that all subsets which contain the number 2
come before all subsets which don’t contain 27



()

(d)

How many permutations of Z2(S) are there, so that no subset is ever followed by a subset of
smaller size? For instance, you would not be allowed to put the subset {3} after the subset
{1,2} in your list because {3} has smaller size than {1,2}.

Find the number of ordered pairs (B,C) where B and C' are disjoint subsets of S. For
instance, ({2}, {1}) is such an ordered pair, and so is ({1},{2}), but ({2}, {1,2}) is not since
{2} and {1,2} are not disjoint. [Hint: build such an ordered pair one element at a time.]

There are 2* = 16 subsets of {1,2,3,4} (that is, elements of Z(9)), so there are 16!
permutations of Z(.5).

The subsets of S that don’t contain 2 are just the subsets of {1, 3,4}, so there are 23 = 8
of these. So there must be 16 — 8 = 8 subsets which do contain 2. Each permissible
permutation of &?(.S) must consist of a list of the 8 subsets containing 2, followed by a
list of the 8 subsets not containing 2. There are 8! ways to form each of these separate
lists, so there are 8! - 8! = (8!)2 ways to list all 16 subsets.

This time a permissible permutation has to start with the smallest subset (which is
the empty set), followed by the subsets of size 1 in some order, then by the subsets
of size 2 in some order, then by the subsets of size 3 in some order, and ending with
the largest subset, namely the entire set {1,2,3,4}. There are four subsets of size 1
(namely {1},{2},{3},{4}), so there are 4! ways to list these four subsets. Similarly
there are (;) = 6 subsets of size 2, and thus 6! ways to list them, and 4 subsets of size
3 and thus 4! ways to list them. Thus the total number of permutations we can form is

1-41-61-41-1 = (4)26! = 414720.

For B and C to be disjoint, each element of {1,2,3,4} can belong to either B or C or
neither. So we go through the elements 1,2, 3,4 in this order, for each element saying
whether it is in B, in C, or in neither. For instance, the choices “in B, in neither, in
C, in C” would correspond to the disjoint subsets B = {1} and C' = {3,4}. We get
3 choices for each of the four elements of {1,2,3,4}, so there are 3* = 81 such lists of
choices, so 81 such ordered pairs (B, C).

Find 2)_ (3 + A — = an =1 + 2n for n = 1,2 and 3. Note: there are 2n — 1
2 2 2 2 2

terms in this sum, with alternating signs, beginning and ending with +.
Using your answers to part (a) (and more calculations if you need them), guess a simple

f1f2—3—|—4——2n_1+2n't ¢
ormula for | 5 5 5 5 | in terms of n.

Use induction (or well ordering) to prove that your guess in part (b) is correct for all positive
integers n.

Give a combinatorial proof (for example, see pages 357 and 360) that

)+ ()G () 6)

for all integers n > 3. [Hint: addition rule. How many 3-element subsets of {1,2,...,n} have
largest element n? How many have largest element n — 1?7 And so on.]



(a) When n = 1, the expression is just (;) = 1. When n = 2, the expression is

@_@*@):1—3%:4,

When n = 3, the expression is

@‘@%3)‘(2%@=1—3+6—10+15:9,

(b) From part (a) we might guess that

-0 () )+ ()

for all integers n > 1.

(c) Here is a proof by induction of the formula in part (b).
Basis Step. When n = 1, we already checked the equation in part (a).

Inductive Step. Assume that the equation is true for some integer n = k > 1. We want
to prove that the equation is true for the next integer n = k + 1. So we are assuming

B e S E )

and we want to prove that

@) - <;’) + <;l> N (2(k: +21) - 1) . <2(k2+ 1)) ke @
_ <2(k‘ +21) - 1) N (2(k2+ 1))

to both sides of equation (1). This gives
()G ()= () G)- ("))
L <2(k +21) - 1) ) (2(k2+ 1))

The left side is the same as the left side of (2) which we want to prove, so it means we
need to prove that the right sides are equal. That is, we need to prove that

2 (2(k:+1)—1) N (2(k+1)) (k1)

Add

2 2



Well,

o (Q(k +21) - 1) ) (2(k:2+ 1)) _ o (%; 1) ) (%;2)
2k +1)(2k) |, (2k+2)(2k+1)

2 2
2k +1

el

= K2+ [—2k + (2k + 2)]
= K+ @2k+1)=(k+1)?

which is what we needed to prove. So by induction, the equation must be true for all
integers n > 1.

The number of 3-element subsets of {1,2,...,n} is just (g) We count these subsets
again by dividing them into groups according to the largest element in each subset,
and counting how many subsets there are in each group. The largest element in any
3-element subset of {1,2,...,n} must obviously be at least 3. Thus we can partition
the 3-element subsets of {1,2,...,n} into n — 2 groups Ss, Sy, ..., S,, where for each
integer k € {3,4,...,n}, Sk is the set of all 3-element subsets of {1,2,... ,n} with
largest element k. Now for each k € {3,4,...,n}, if a 3-element subset of {1,2,... ,n}
has largest element k, then the other two elements in the subset must belong to the

(k — 1)-element set {1,2,...,k — 1}. Thus there are exactly (k;) such subsets; that

is, Sk has exactly (kgl) elements for each k. By the addition rule, the total number of
3-element subsets of {1,2,...,n} must be

é(k;):@+@)+(‘2‘)+._-+(n;1)

Since this must also equal (3), we get the formula in (d).

Note: The equation in (d) is Exercise 14, page 362, where they ask for a proof by
induction.



