- 1. If $f : \mathbb{R} \to \mathbb{R}$ is a function (where \mathbb{R} is the set of all real numbers), we define the function $f^{(2)}$ to be the composition $f \circ f$, and for any integer $n \ge 2$, define $f^{(n+1)} = f \circ f^{(n)}$. So $f^{(2)}(x) = (f \circ f)(x) = f(f(x))$, $f^{(3)}(x) = (f \circ f^{(2)})(x) = f(f(f(x)))$, and so on. We also define $f^{(1)}$ to be f.
 - (a) Use Theorem 3.5.1 on page 167 to prove that |x |x|| = 0 for every real number x.
 - (b) Suppose that $f(x) = x \lfloor x \rfloor$ for all $x \in \mathbb{R}$. Calculate and simplify $f^{(2)}(x)$ and $f^{(3)}(x)$. [Hint: part (a).] Then guess a simple formula for $f^{(n)}(x)$ for all integers $n \ge 1$. Use induction (or well ordering) to prove your guess.
 - (c) Suppose that $g(x) = x + \lfloor x \rfloor$ for all $x \in \mathbb{R}$. Calculate and simplify $g^{(2)}(x)$ and $g^{(3)}(x)$ (and more if you need them). [*Hint*: Theorem 3.5.1 on page 167.] Then guess a simple formula for $g^{(n)}(x)$ for all integers $n \ge 1$. Use induction (or well ordering) to prove your guess.
 - (a) Let x be a real number. By Theorem 3.5.1, since $-\lfloor x \rfloor \in \mathbb{Z}$,

$$\lfloor x - \lfloor x \rfloor \rfloor = \lfloor x + (-\lfloor x \rfloor) \rfloor = \lfloor x \rfloor + (-\lfloor x \rfloor) = 0.$$

(b) From part (a) we get that

$$f^{(2)}(x) = f(f(x)) = f(x - \lfloor x \rfloor) = (x - \lfloor x \rfloor) - \lfloor x - \lfloor x \rfloor \rfloor = x - \lfloor x \rfloor = f(x).$$

From this it is clear that $f^{(3)}(x) = (f \circ f^{(2)})(x) = (f \circ f)(x) = f^{(2)}(x) = f(x)$ too. We guess that $f^{(n)}(x) = x - \lfloor x \rfloor = f(x)$ for all integers $n \ge 1$. The basis step is the case n = 1, which just says that $f^{(1)}(x) = f(x)$, which is true by definition above. Note that the formula is true for n = 2 too, as we already showed above. Now for the inductive step, suppose that $f^{(k)}(x) = f(x)$ for some integer $k \ge 1$. Then

$$f^{(k+1)}(x) = (f \circ f^{(k)})(x) = (f \circ f)(x)$$
 by the assumption
= $f^{(2)}(x) = f(x)$ by the case $n = 2$,

so the statement is true for the integer n = k + 1. Therefore the statement is true for all integers $n \ge 1$.

(c) Well,

$$g^{(2)}(x) = g(g(x)) = g(x + \lfloor x \rfloor)$$

= $(x + \lfloor x \rfloor) + \lfloor x + \lfloor x \rfloor \rfloor$
= $(x + \lfloor x \rfloor) + \lfloor x \rfloor + \lfloor x \rfloor$ by Theorem 3.5.1
= $x + 3 \lfloor x \rfloor$

And then

$$g^{(3)}(x) = (g \circ g^{(2)})(x) = g(x + 3\lfloor x \rfloor)$$

= $(x + 3\lfloor x \rfloor) + \lfloor x + 3\lfloor x \rfloor \rfloor$
= $(x + 3\lfloor x \rfloor) + \lfloor x \rfloor + 3\lfloor x \rfloor$ by Theorem 3.5.1
= $x + 7\lfloor x \rfloor$.

And of course $g^{(1)}(x) = g(x) = x + \lfloor x \rfloor$. We guess (maybe after working out $g^{(4)}(x)$ too) that $g^{(n)}(x) = x + (2^n - 1)\lfloor x \rfloor$ for all integers $n \ge 1$. Here is a proof of this formula by induction.

The basis step is the case n = 1, which says $g^{(1)}(x) = x + (2^1 - 1)\lfloor x \rfloor = x + \lfloor x \rfloor$, which is true. So suppose that $g^{(k)}(x) = x + (2^k - 1)\lfloor x \rfloor$ for some integer $k \ge 1$. Then

$$g^{(k+1)}(x) = (g \circ g^{(k)})(x) = g(x + (2^k - 1)\lfloor x \rfloor) \text{ by assumption}$$

= $(x + (2^k - 1)\lfloor x \rfloor) + \lfloor x + (2^k - 1)\lfloor x \rfloor \rfloor$
= $(x + (2^k - 1)\lfloor x \rfloor) + \lfloor x \rfloor + (2^k - 1)\lfloor x \rfloor$ by Theorem 3.5.1
= $x + (2^k - 1 + 1 + 2^k - 1)\lfloor x \rfloor$
= $x + (2^{k+1} - 1)\lfloor x \rfloor$.

so the formula is true for the integer n = k + 1. Therefore the formula is true for all integers $n \ge 1$.

- 2. Let $[n] = \{1, 2, 3, ..., n\}$, where $n \ge 3$ is an integer.
 - (a) Define the relation \mathscr{R} on the power set $\mathscr{P}([n])$ by: for all sets $A, B \in \mathscr{P}([n])$, $A\mathscr{R}B$ if and only if $A B = \{1, 2\}$. Is \mathscr{R} reflexive? Symmetric? Transitive? Give reasons.
 - (b) Find the number of sets $B \in \mathscr{P}([n])$ so that $\{1, 2, 3\}\mathscr{R}B$.
 - (c) Define the relation \mathscr{S} on the power set $\mathscr{P}([n])$ by: for all sets $A, B \in \mathscr{P}([n])$, $A\mathscr{S}B$ if and only if $A B \subseteq \{1, 2\}$. Is \mathscr{S} reflexive? Symmetric? Transitive? Give reasons.
 - (a) R is not reflexive. For example, let A = Ø ∈ P([n]). Then A A = Ø ≠ {1,2}, so A RA. (In fact, no set A ∈ P([n]) is related to itself, for a similar reason.)
 R is not symmetric. For example, let A = {1,2} and B = Ø. Then A, B ∈ P([n]) and A B = {1,2}, so ARB, but B A = Ø ≠ {1,2}, so B RA.
 R is transitive. Suppose that A, B, C ∈ P([n]) are such that ARB and BRC. This means that A B = {1,2} and B C = {1,2}. But A B = {1,2} means in particular that 1 ∉ B, while B C = {1,2} means in particular that 1 ∈ B. This is a contradiction, which shows that the "if" part "ARB and BRC" of the definition of transitivity cannot happen. Thus R is transitive vacuously.
 - (b) $\{1, 2, 3\} \mathscr{R}B$ means that $\{1, 2, 3\} B = \{1, 2\}$, which happens exactly if $1 \notin B, 2 \notin B$, and $3 \in B$. The other n-3 elements $\{4, 5, \ldots, n\}$ of [n] can either be in B or not, it doesn't matter because $\{1, 2, 3\} \mathscr{R}B$ will be true regardless. Thus there are exactly 2^{n-3} such sets $B \in \mathscr{P}([n])$.
 - (c) \mathscr{S} is reflexive. Let $A \in \mathscr{P}([n])$ be arbitrary. Then $A A = \emptyset \subseteq \{1, 2\}$, so $A\mathscr{S}A$. \mathscr{S} is not symmetric. For example, let $A = \{1, 2\}$ and $B = \{3\}$. Then $A, B \in \mathscr{P}([n])$ and $A - B = \{1, 2\} \subseteq \{1, 2\}$, so $A\mathscr{S}B$, but $B - A = \{3\} \not\subseteq \{1, 2\}$, so $B \mathscr{S}A$. \mathscr{S} is transitive. Suppose that $A, B, C \in \mathscr{P}([n])$ are such that $A\mathscr{S}B$ and $B\mathscr{S}C$. This means that $A - B \subseteq \{1, 2\}$ and $B - C \subseteq \{1, 2\}$. We want to prove that $A\mathscr{S}C$, which means we want to prove that $A - C \subseteq \{1, 2\}$. Let $a \in A - C$ be arbitrary. This means $a \in A$ and $a \notin C$. Now look at two cases.

Case (i). If $a \notin B$, then we would get $a \in A-B$ and thus $a \in \{1,2\}$, since $A-B \subseteq \{1,2\}$. Case (ii). If $a \in B$, then since $a \notin C$, we get that $a \in B - C$ and thus $a \in \{1,2\}$ since $B - C \subseteq \{1,2\}$. So $a \in \{1,2\}$ in either case. Therefore $A - C \subseteq \{1,2\}$, which completes the proof that \mathscr{S} is transitive.

- 3. For sets A and B, define a relation R on $A \cup B$ by: for all $x, y \in A \cup B$, xRy if and only if $(x, y) \in A \times B$. Prove or disprove each of the following statements.
 - (a) For all sets A and B, if R is reflexive then A = B.
 - (b) For all sets A and B, if R is symmetric then A = B.
 - (c) For all nonempty sets A and B, if R is symmetric then A = B.
 - (d) For all nonempty sets A and B, if R is transitive then A = B.
 - (e) For all sets A and B, if A = B then R is an equivalence relation.
 - (a) This statement is **true**. Here is a proof. Suppose that A and B are sets so that R is reflexive. We want to prove that A = B. It is enough to prove that $A \subseteq B$. So let $a \in A$ be arbitrary. Since R is reflexive and $a \in A \cup B$, aRa must be true, which means that $(a, a) \in A \times B$. But this means that $a \in B$. Therefore $A \subseteq B$. In the same way we could prove that $B \subseteq A$, so A = B.
 - (b) This statement is **false**. A counterexample is $A = \{1\}$ and $B = \emptyset$. Then $A \times B = \emptyset$ (this is Exercise 27 on page 292), so no elements can be related by R. Thus $R = \emptyset$, and so R is symmetric vacuously. However $A \neq B$.
 - (c) This statement is **true**. Here is a proof. Suppose that A and B are nonempty sets so that R is symmetric. We want to prove that A = B. Once again it is enough to prove that $A \subseteq B$. So let $a \in A$ be arbitrary, and let b be any element in B, which we know exists because $B \neq \emptyset$. Then $(a, b) \in A \times B$, so aRb. Since R is symmetric, this means that bRa must be true, so $(b, a) \in A \times B$. But this means that $a \in B$. Therefore $A \subseteq B$. In the same way we could prove that $B \subseteq A$, so A = B.
 - (d) This statement is **false**. A counterexample is $A = \{1\}$ and $B = \emptyset$. Then again $A \times B = \emptyset$ and so $R = \emptyset$. Thus R is transitive vacuously. However $A \neq B$.
 - (e) This statement is **true**. Here is a proof. Let A = B be an arbitrary set. Then $A \cup B = A$, so R is defined by: for all $x, y \in A$, xRy if and only if $(x, y) \in A \times A$. But $(x, y) \in A \times A$ for all $x, y \in A$, so xRy for all $x, y \in A$. Thus it is clear that R is reflexive, symmetric and transitive, so R is an equivalence relation.

Note that in this case R has just one equivalence class, namely all of A, since [x] = A for all $x \in A$.