1. If f:

MATH 271 ASSIGNMENT 4 SOLUTIONS

R — R is a function (where R is the set of all real numbers), we define the function f @) to be

the composition fo f, and for any integer n > 2, define f**1) = fo f("). So f@)(z) = (fo f)(z) =
F(f(@)), [ (@) = (f o fP)(x) = F(f(f(2))), and so on. We also define f() to be f.

(a)
(b)

()

(a)

(b)

Use Theorem 3.5.1 on page 167 to prove that |« — [z]|] = 0 for every real number x.

Suppose that f(z) = z — |z for all z € R. Calculate and simplify £ (z) and f® (). [Hint:
part (a).] Then guess a simple formula for £ (z) for all integers n > 1. Use induction (or
well ordering) to prove your guess.

Suppose that g(z) = 2 + |z] for all z € R. Calculate and simplify ¢(® (z) and ¢® (z) (and
more if you need them). [Hint: Theorem 3.5.1 on page 167.] Then guess a simple formula for
g™ (z) for all integers n > 1. Use induction (or well ordering) to prove your guess.

Let = be a real number. By Theorem 3.5.1, since —|z] € Z,
Lz = 2] = [+ (=[z])] = =] + (=[z]) = 0.
From part (a) we get that

fO(2) = f(f(2) = fle — |2]) = (&~ |2]) = |~ [z]] =2~ [2] = f().

From this it is clear that f©®(z) = (f o f®)(z) = (fo f)(z) = f@(z) = f(x) too.

We guess that f(x) = 2 — 2] = f(z) for all integers n > 1. The basis step is the case
n = 1, which just says that f()(z) = f(x), which is true by definition above. Note that
the formula is true for n = 2 too, as we already showed above. Now for the inductive
step, suppose that f*)(z) = f(x) for some integer k > 1. Then

fED (@) = (Fo f®)(x) = (fo f)(x) by the assumption
f(Z)(x) = f(x) by the case n = 2,

so the statement is true for the integer n = k + 1. Therefore the statement is true for
all integers n > 1.

Well,
g?(@) = glg(2)) = gz + [2])
= (v [z]) + [z + |=]]
= (v+ |z])+ [z]| + |z] by Theorem 3.5.1
x+ 3|z]
And then
9D(@) = (909?)(x) = g(x+3[z])
= (x+3|z])+ [z +3|z]]
= (x+3|z]) + |z] +3|z] by Theorem 3.5.1
= 4+ 7|z



And of course gV (z) = g(z) = 2+ |x|. We guess (maybe after working out g™ () too)
that ¢ (z) = 2 + (2" — 1)| =] for all integers n > 1. Here is a proof of this formula by
induction.

The basis step is the case n = 1, which says ¢! (z) = z + (2! — 1)|x| = = + x|, which
is true. So suppose that ¢*)(x) = x + (2% — 1)|z] for some integer k¥ > 1. Then

¥ (@) = (gog™)(x) =glx+ (2" —1)[z]) by assumption
= (z+ 2" =1[z]) + [z + (2"~ 1)[2]]
= (z+ 2" = 1D[x)) + 2] + (2" - 1)[] by Theorem 3.5.1

= o+ 2" -1+1+2F-1)|z]
= x4+ (2" —1)|z).

so the formula is true for the integer n = k + 1. Therefore the formula is true for all
integers n > 1.

2. Let [n] ={1,2,3,...,n}, where n > 3 is an integer.

(a) Define the relation #Z on the power set &([n]) by: for all sets A, B € #([n]), AZB if and
only if A— B ={1,2}. Is Z reflexive? Symmetric? Transitive? Give reasons.

(b) Find the number of sets B € #([n]) so that {1,2,3}Z%B.

(c) Define the relation . on the power set Z([n]) by: for all sets A, B € &([n]), A.¥B if and
only if A — B C {1,2}. Is .7 reflexive? Symmetric? Transitive? Give reasons.

(a) Z is not reflexive. For example, let A =0 € Z([n]). Then A — A =0 # {1,2}, so
AZA. (In fact, no set A € H([n]) is related to itself, for a similar reason.)
Z is not symmetric. For example, let A = {1,2} and B = (). Then A, B € Z([n])
and A — B ={1,2}, s0o AZB, but B— A=0# {1,2}, so BZA.
Z is transitive. Suppose that A, B,C € Z(|n|) are such that AZB and BZC.
This means that A — B = {1,2} and B — C = {1,2}. But A — B = {1,2} means in
particular that 1 ¢ B, while B — C' = {1,2} means in particular that 1 € B. This is
a contradiction, which shows that the “if” part “AZB and BZC” of the definition of
transitivity cannot happen. Thus & is transitive vacuously.

(b) {1,2,3}%#B means that {1,2,3} — B = {1,2}, which happens exactly if 1 ¢ B, 2 ¢ B,
and 3 € B. The other n — 3 elements {4,5,...,n} of [n] can either be in B or not, it

doesn’t matter because {1, 2, 3}% B will be true regardless. Thus there are exactly 273
such sets B € Z([n]).

(c) .77 is reflexive. Let A € &([n]) be arbitrary. Then A — A = C {1,2}, so A A.
& is not symmetric. For example, let A = {1,2} and B = {3}. Then A, B € &([n])
and A — B ={1,2} C {1,2},s0 AYB, but B— A= {3} Z {1,2}, so B.ZA.
< is transitive. Suppose that A, B,C € Z([n|) are such that A.¥ B and B.C. This
means that A — B C {1,2} and B — C C {1,2}. We want to prove that A% C, which
means we want to prove that A — C C {1,2}. Let a € A — C be arbitrary. This means
a € Aand a ¢ C. Now look at two cases.
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Case (i). If a ¢ B, then we would get @ € A—B and thus a € {1, 2}, since A—B C {1,2}.
Case (ii). If a € B, then since a ¢ C, we get that a« € B — C and thus a € {1, 2} since
B—-C C{1,2}.
So a € {1,2} in either case. Therefore A — C C {1, 2}, which completes the proof that
< is transitive.

3. For sets A and B, define a relation R on AU B by: for all z,y € AU B, xRy if and only if
(z,y) € A x B. Prove or disprove each of the following statements.

(a) For all sets A and B, if R is reflexive then A = B.
(b) For all sets A and B, if R is symmetric then A = B.

c¢) For all nonempty sets A and B, if R is symmetric then A = B.

)

(c)

(d) For all nonempty sets A and B, if R is transitive then A = B.
)

(e) For all sets A and B, if A = B then R is an equivalence relation.

(a) This statement is true. Here is a proof. Suppose that A and B are sets so that R is
reflexive. We want to prove that A = B. It is enough to prove that A C B. So let
a € A be arbitrary. Since R is reflexive and a € AU B, aRa must be true, which means
that (a,a) € A x B. But this means that a € B. Therefore A C B. In the same way
we could prove that B C A, so A = B.

(b) This statement is false. A counterexample is A = {1} and B = (). Then A x B =)
(this is Exercise 27 on page 292), so no elements can be related by R. Thus R = (), and
so R is symmetric vacuously. However A # B.

(c) This statement is true. Here is a proof. Suppose that A and B are nonempty sets so
that R is symmetric. We want to prove that A = B. Once again it is enough to prove
that A C B. So let a € A be arbitrary, and let b be any element in B, which we know
exists because B # (). Then (a,b) € A x B, so aRb. Since R is symmetric, this means
that bRa must be true, so (b,a) € Ax B. But this means that a € B. Therefore A C B.
In the same way we could prove that B C A, so A = B.

(d) This statement is false. A counterexample is A = {1} and B = (). Then again AxB = ()
and so R = (). Thus R is transitive vacuously. However A # B.

(e) This statement is true. Here is a proof. Let A = B be an arbitrary set. Then AUB = A,
so R is defined by: for all z,y € A, xRy if and only if (z,y) € Ax A. But (z,y) € Ax A
for all x,y € A, so xRy for all z,y € A. Thus it is clear that R is reflexive, symmetric
and transitive, so R is an equivalence relation.

Note that in this case R has just one equivalence class, namely all of A, since [z] = A
for all z € A.



