1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function (where \mathbb{R} is the set of all real numbers), we define the function $f^{(2)}$ to be the composition $f \circ f$, and for any integer $n \geq 2$, define $f^{(n+1)}=f \circ f^{(n)}$. So $f^{(2)}(x)=(f \circ f)(x)=$ $f(f(x)), f^{(3)}(x)=\left(f \circ f^{(2)}\right)(x)=f(f(f(x)))$, and so on. We also define $f^{(1)}$ to be f.
(a) Use Theorem 3.5.1 on page 167 to prove that $\lfloor x-\lfloor x\rfloor\rfloor=0$ for every real number x.
(b) Suppose that $f(x)=x-\lfloor x\rfloor$ for all $x \in \mathbb{R}$. Calculate and simplify $f^{(2)}(x)$ and $f^{(3)}(x)$. [Hint: part (a).] Then guess a simple formula for $f^{(n)}(x)$ for all integers $n \geq 1$. Use induction (or well ordering) to prove your guess.
(c) Suppose that $g(x)=x+\lfloor x\rfloor$ for all $x \in \mathbb{R}$. Calculate and simplify $g^{(2)}(x)$ and $g^{(3)}(x)$ (and more if you need them). [Hint: Theorem 3.5.1 on page 167.] Then guess a simple formula for $g^{(n)}(x)$ for all integers $n \geq 1$. Use induction (or well ordering) to prove your guess.
(a) Let x be a real number. By Theorem 3.5.1, since $-\lfloor x\rfloor \in \mathbb{Z}$,

$$
\lfloor x-\lfloor x\rfloor\rfloor=\lfloor x+(-\lfloor x\rfloor)\rfloor=\lfloor x\rfloor+(-\lfloor x\rfloor)=0 \text {. }
$$

(b) From part (a) we get that

$$
f^{(2)}(x)=f(f(x))=f(x-\lfloor x\rfloor)=(x-\lfloor x\rfloor)-\lfloor x-\lfloor x\rfloor\rfloor=x-\lfloor x\rfloor=f(x)
$$

From this it is clear that $f^{(3)}(x)=\left(f \circ f^{(2)}\right)(x)=(f \circ f)(x)=f^{(2)}(x)=f(x)$ too.
We guess that $f^{(n)}(x)=x-\lfloor x\rfloor=f(x)$ for all integers $n \geq 1$. The basis step is the case $n=1$, which just says that $f^{(1)}(x)=f(x)$, which is true by definition above. Note that the formula is true for $n=2$ too, as we already showed above. Now for the inductive step, suppose that $f^{(k)}(x)=f(x)$ for some integer $k \geq 1$. Then

$$
\begin{aligned}
f^{(k+1)}(x) & =\left(f \circ f^{(k)}\right)(x)=(f \circ f)(x) \quad \text { by the assumption } \\
& =f^{(2)}(x)=f(x) \quad \text { by the case } n=2,
\end{aligned}
$$

so the statement is true for the integer $n=k+1$. Therefore the statement is true for all integers $n \geq 1$.
(c) Well,

$$
\begin{aligned}
g^{(2)}(x) & =g(g(x))=g(x+\lfloor x\rfloor) \\
& =(x+\lfloor x\rfloor)+\lfloor x+\lfloor x\rfloor\rfloor \\
& =(x+\lfloor x\rfloor)+\lfloor x\rfloor+\lfloor x\rfloor \\
& =x+3\lfloor x\rfloor
\end{aligned}
$$

And then

$$
\begin{aligned}
g^{(3)}(x) & =\left(g \circ g^{(2)}\right)(x)=g(x+3\lfloor x\rfloor) \\
& =(x+3\lfloor x\rfloor)+\lfloor x+3\lfloor x\rfloor\rfloor \\
& =(x+3\lfloor x\rfloor)+\lfloor x\rfloor+3\lfloor x\rfloor \\
& =x+7\lfloor x\rfloor .
\end{aligned}
$$

And of course $g^{(1)}(x)=g(x)=x+\lfloor x\rfloor$. We guess (maybe after working out $g^{(4)}(x)$ too) that $g^{(n)}(x)=x+\left(2^{n}-1\right)\lfloor x\rfloor$ for all integers $n \geq 1$. Here is a proof of this formula by induction.
The basis step is the case $n=1$, which says $g^{(1)}(x)=x+\left(2^{1}-1\right)\lfloor x\rfloor=x+\lfloor x\rfloor$, which is true. So suppose that $g^{(k)}(x)=x+\left(2^{k}-1\right)\lfloor x\rfloor$ for some integer $k \geq 1$. Then

$$
\begin{aligned}
g^{(k+1)}(x) & =\left(g \circ g^{(k)}\right)(x)=g\left(x+\left(2^{k}-1\right)\lfloor x\rfloor\right) \quad \text { by assumption } \\
& =\left(x+\left(2^{k}-1\right)\lfloor x\rfloor\right)+\left\lfloor x+\left(2^{k}-1\right)\lfloor x\rfloor\right\rfloor \\
& =\left(x+\left(2^{k}-1\right)\lfloor x\rfloor\right)+\lfloor x\rfloor+\left(2^{k}-1\right)\lfloor x\rfloor \quad \text { by Theorem 3.5.1 } \\
& =x+\left(2^{k}-1+1+2^{k}-1\right)\lfloor x\rfloor \\
& =x+\left(2^{k+1}-1\right)\lfloor x\rfloor .
\end{aligned}
$$

so the formula is true for the integer $n=k+1$. Therefore the formula is true for all integers $n \geq 1$.
2. Let $[n]=\{1,2,3, \ldots, n\}$, where $n \geq 3$ is an integer.
(a) Define the relation \mathscr{R} on the power set $\mathscr{P}([n])$ by: for all sets $A, B \in \mathscr{P}([n]), A \mathscr{R} B$ if and only if $A-B=\{1,2\}$. Is \mathscr{R} reflexive? Symmetric? Transitive? Give reasons.
(b) Find the number of sets $B \in \mathscr{P}([n])$ so that $\{1,2,3\} \mathscr{R} B$.
(c) Define the relation \mathscr{S} on the power set $\mathscr{P}([n])$ by: for all sets $A, B \in \mathscr{P}([n]), A \mathscr{S} B$ if and only if $A-B \subseteq\{1,2\}$. Is \mathscr{S} reflexive? Symmetric? Transitive? Give reasons.
(a) \mathscr{R} is not reflexive. For example, let $A=\emptyset \in \mathscr{P}([n])$. Then $A-A=\emptyset \neq\{1,2\}$, so $A \mathscr{R} A$. (In fact, no set $A \in \mathscr{P}([n])$ is related to itself, for a similar reason.)
\mathscr{R} is not symmetric. For example, let $A=\{1,2\}$ and $B=\emptyset$. Then $A, B \in \mathscr{P}([n])$ and $A-B=\{1,2\}$, so $A \mathscr{R} B$, but $B-A=\emptyset \neq\{1,2\}$, so $B \mathscr{R} A$.
\mathscr{R} is transitive. Suppose that $A, B, C \in \mathscr{P}([n])$ are such that $A \mathscr{R} B$ and $B \mathscr{R} C$. This means that $A-B=\{1,2\}$ and $B-C=\{1,2\}$. But $A-B=\{1,2\}$ means in particular that $1 \notin B$, while $B-C=\{1,2\}$ means in particular that $1 \in B$. This is a contradiction, which shows that the "if" part " $A \mathscr{R} B$ and $B \mathscr{R} C$ " of the definition of transitivity cannot happen. Thus \mathscr{R} is transitive vacuously.
(b) $\{1,2,3\} \mathscr{R} B$ means that $\{1,2,3\}-B=\{1,2\}$, which happens exactly if $1 \notin B, 2 \notin B$, and $3 \in B$. The other $n-3$ elements $\{4,5, \ldots, n\}$ of $[n]$ can either be in B or not, it doesn't matter because $\{1,2,3\} \mathscr{R} B$ will be true regardless. Thus there are exactly 2^{n-3} such sets $B \in \mathscr{P}([n])$.
(c) \mathscr{S} is reflexive. Let $A \in \mathscr{P}([n])$ be arbitrary. Then $A-A=\emptyset \subseteq\{1,2\}$, so $A \mathscr{S} A$.
\mathscr{S} is not symmetric. For example, let $A=\{1,2\}$ and $B=\{3\}$. Then $A, B \in \mathscr{P}([n])$ and $A-B=\{1,2\} \subseteq\{1,2\}$, so $A \mathscr{S} B$, but $B-A=\{3\} \nsubseteq\{1,2\}$, so $B \mathscr{S} A$.
\mathscr{S} is transitive. Suppose that $A, B, C \in \mathscr{P}([n])$ are such that $A \mathscr{S} B$ and $B \mathscr{S} C$. This means that $A-B \subseteq\{1,2\}$ and $B-C \subseteq\{1,2\}$. We want to prove that $A \mathscr{S} C$, which means we want to prove that $A-C \subseteq\{1,2\}$. Let $a \in A-C$ be arbitrary. This means $a \in A$ and $a \notin C$. Now look at two cases.

Case (i). If $a \notin B$, then we would get $a \in A-B$ and thus $a \in\{1,2\}$, since $A-B \subseteq\{1,2\}$. Case (ii). If $a \in B$, then since $a \notin C$, we get that $a \in B-C$ and thus $a \in\{1,2\}$ since $B-C \subseteq\{1,2\}$.
So $a \in\{1,2\}$ in either case. Therefore $A-C \subseteq\{1,2\}$, which completes the proof that \mathscr{S} is transitive.
3. For sets A and B, define a relation R on $A \cup B$ by: for all $x, y \in A \cup B, x R y$ if and only if $(x, y) \in A \times B$. Prove or disprove each of the following statements.
(a) For all sets A and B, if R is reflexive then $A=B$.
(b) For all sets A and B, if R is symmetric then $A=B$.
(c) For all nonempty sets A and B, if R is symmetric then $A=B$.
(d) For all nonempty sets A and B, if R is transitive then $A=B$.
(e) For all sets A and B, if $A=B$ then R is an equivalence relation.
(a) This statement is true. Here is a proof. Suppose that A and B are sets so that R is reflexive. We want to prove that $A=B$. It is enough to prove that $A \subseteq B$. So let $a \in A$ be arbitrary. Since R is reflexive and $a \in A \cup B, a R a$ must be true, which means that $(a, a) \in A \times B$. But this means that $a \in B$. Therefore $A \subseteq B$. In the same way we could prove that $B \subseteq A$, so $A=B$.
(b) This statement is false. A counterexample is $A=\{1\}$ and $B=\emptyset$. Then $A \times B=\emptyset$ (this is Exercise 27 on page 292), so no elements can be related by R. Thus $R=\emptyset$, and so R is symmetric vacuously. However $A \neq B$.
(c) This statement is true. Here is a proof. Suppose that A and B are nonempty sets so that R is symmetric. We want to prove that $A=B$. Once again it is enough to prove that $A \subseteq B$. So let $a \in A$ be arbitrary, and let b be any element in B, which we know exists because $B \neq \emptyset$. Then $(a, b) \in A \times B$, so $a R b$. Since R is symmetric, this means that $b R a$ must be true, so $(b, a) \in A \times B$. But this means that $a \in B$. Therefore $A \subseteq B$. In the same way we could prove that $B \subseteq A$, so $A=B$.
(d) This statement is false. A counterexample is $A=\{1\}$ and $B=\emptyset$. Then again $A \times B=\emptyset$ and so $R=\emptyset$. Thus R is transitive vacuously. However $A \neq B$.
(e) This statement is true. Here is a proof. Let $A=B$ be an arbitrary set. Then $A \cup B=A$, so R is defined by: for all $x, y \in A, x R y$ if and only if $(x, y) \in A \times A$. But $(x, y) \in A \times A$ for all $x, y \in A$, so $x R y$ for all $x, y \in A$. Thus it is clear that R is reflexive, symmetric and transitive, so R is an equivalence relation.
Note that in this case R has just one equivalence class, namely all of A, since $[x]=A$ for all $x \in A$.

