
MATH 271 ASSIGNMENT 4 SOLUTIONS

1. If f : R → R is a function (where R is the set of all real numbers), we define the function f (2) to be
the composition f ◦ f , and for any integer n ≥ 2, define f (n+1) = f ◦ f (n). So f (2)(x) = (f ◦ f)(x) =
f(f(x)), f (3)(x) = (f ◦ f (2))(x) = f(f(f(x))), and so on. We also define f (1) to be f .

(a) Use Theorem 3.5.1 on page 167 to prove that ⌊x − ⌊x⌋⌋ = 0 for every real number x.

(b) Suppose that f(x) = x− ⌊x⌋ for all x ∈ R. Calculate and simplify f (2)(x) and f (3)(x). [Hint:
part (a).] Then guess a simple formula for f (n)(x) for all integers n ≥ 1. Use induction (or
well ordering) to prove your guess.

(c) Suppose that g(x) = x + ⌊x⌋ for all x ∈ R. Calculate and simplify g(2)(x) and g(3)(x) (and
more if you need them). [Hint: Theorem 3.5.1 on page 167.] Then guess a simple formula for
g(n)(x) for all integers n ≥ 1. Use induction (or well ordering) to prove your guess.

(a) Let x be a real number. By Theorem 3.5.1, since −⌊x⌋ ∈ Z,

⌊x − ⌊x⌋⌋ = ⌊x + (−⌊x⌋)⌋ = ⌊x⌋ + (−⌊x⌋) = 0.

(b) From part (a) we get that

f (2)(x) = f(f(x)) = f(x − ⌊x⌋) = (x − ⌊x⌋) − ⌊x − ⌊x⌋⌋ = x − ⌊x⌋ = f(x).

From this it is clear that f (3)(x) = (f ◦ f (2))(x) = (f ◦ f)(x) = f (2)(x) = f(x) too.

We guess that f (n)(x) = x−⌊x⌋ = f(x) for all integers n ≥ 1. The basis step is the case
n = 1, which just says that f (1)(x) = f(x), which is true by definition above. Note that
the formula is true for n = 2 too, as we already showed above. Now for the inductive
step, suppose that f (k)(x) = f(x) for some integer k ≥ 1. Then

f (k+1)(x) = (f ◦ f (k))(x) = (f ◦ f)(x) by the assumption

= f (2)(x) = f(x) by the case n = 2,

so the statement is true for the integer n = k + 1. Therefore the statement is true for
all integers n ≥ 1.

(c) Well,

g(2)(x) = g(g(x)) = g(x + ⌊x⌋)

= (x + ⌊x⌋) + ⌊x + ⌊x⌋⌋

= (x + ⌊x⌋) + ⌊x⌋ + ⌊x⌋ by Theorem 3.5.1

= x + 3⌊x⌋

And then

g(3)(x) = (g ◦ g(2))(x) = g(x + 3⌊x⌋)

= (x + 3⌊x⌋) + ⌊x + 3⌊x⌋⌋

= (x + 3⌊x⌋) + ⌊x⌋ + 3⌊x⌋ by Theorem 3.5.1

= x + 7⌊x⌋.
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And of course g(1)(x) = g(x) = x+⌊x⌋. We guess (maybe after working out g(4)(x) too)
that g(n)(x) = x + (2n − 1)⌊x⌋ for all integers n ≥ 1. Here is a proof of this formula by
induction.

The basis step is the case n = 1, which says g(1)(x) = x + (21 − 1)⌊x⌋ = x + ⌊x⌋, which
is true. So suppose that g(k)(x) = x + (2k − 1)⌊x⌋ for some integer k ≥ 1. Then

g(k+1)(x) = (g ◦ g(k))(x) = g(x + (2k − 1)⌊x⌋) by assumption

= (x + (2k − 1)⌊x⌋) + ⌊x + (2k − 1)⌊x⌋⌋

= (x + (2k − 1)⌊x⌋) + ⌊x⌋ + (2k − 1)⌊x⌋ by Theorem 3.5.1

= x + (2k − 1 + 1 + 2k − 1)⌊x⌋

= x + (2k+1 − 1)⌊x⌋.

so the formula is true for the integer n = k + 1. Therefore the formula is true for all
integers n ≥ 1.

2. Let [n] = {1, 2, 3, . . . , n}, where n ≥ 3 is an integer.

(a) Define the relation R on the power set P([n]) by: for all sets A,B ∈ P([n]), ARB if and
only if A − B = {1, 2}. Is R reflexive? Symmetric? Transitive? Give reasons.

(b) Find the number of sets B ∈ P([n]) so that {1, 2, 3}RB.

(c) Define the relation S on the power set P([n]) by: for all sets A,B ∈ P([n]), AS B if and
only if A − B ⊆ {1, 2}. Is S reflexive? Symmetric? Transitive? Give reasons.

(a) R is not reflexive. For example, let A = ∅ ∈ P([n]). Then A − A = ∅ 6= {1, 2}, so
A 6RA. (In fact, no set A ∈ P([n]) is related to itself, for a similar reason.)

R is not symmetric. For example, let A = {1, 2} and B = ∅. Then A, B ∈ P([n])
and A − B = {1, 2}, so ARB, but B − A = ∅ 6= {1, 2}, so B 6RA.

R is transitive. Suppose that A, B, C ∈ P([n]) are such that ARB and BRC.
This means that A − B = {1, 2} and B − C = {1, 2}. But A − B = {1, 2} means in
particular that 1 6∈ B, while B − C = {1, 2} means in particular that 1 ∈ B. This is
a contradiction, which shows that the “if” part “ARB and BRC” of the definition of
transitivity cannot happen. Thus R is transitive vacuously.

(b) {1, 2, 3}RB means that {1, 2, 3} − B = {1, 2}, which happens exactly if 1 6∈ B, 2 6∈ B,
and 3 ∈ B. The other n − 3 elements {4, 5, . . . , n} of [n] can either be in B or not, it
doesn’t matter because {1, 2, 3}RB will be true regardless. Thus there are exactly 2n−3

such sets B ∈ P([n]).

(c) S is reflexive. Let A ∈ P([n]) be arbitrary. Then A − A = ∅ ⊆ {1, 2}, so AS A.

S is not symmetric. For example, let A = {1, 2} and B = {3}. Then A, B ∈ P([n])
and A − B = {1, 2} ⊆ {1, 2}, so AS B, but B − A = {3} 6⊆ {1, 2}, so B 6S A.

S is transitive. Suppose that A, B, C ∈ P([n]) are such that AS B and BS C. This
means that A − B ⊆ {1, 2} and B − C ⊆ {1, 2}. We want to prove that AS C, which
means we want to prove that A−C ⊆ {1, 2}. Let a ∈ A −C be arbitrary. This means
a ∈ A and a 6∈ C. Now look at two cases.
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Case (i). If a 6∈ B, then we would get a ∈ A−B and thus a ∈ {1, 2}, since A−B ⊆ {1, 2}.

Case (ii). If a ∈ B, then since a 6∈ C, we get that a ∈ B − C and thus a ∈ {1, 2} since
B − C ⊆ {1, 2}.

So a ∈ {1, 2} in either case. Therefore A − C ⊆ {1, 2}, which completes the proof that
S is transitive.

3. For sets A and B, define a relation R on A ∪ B by: for all x, y ∈ A ∪ B, xRy if and only if
(x, y) ∈ A × B. Prove or disprove each of the following statements.

(a) For all sets A and B, if R is reflexive then A = B.

(b) For all sets A and B, if R is symmetric then A = B.

(c) For all nonempty sets A and B, if R is symmetric then A = B.

(d) For all nonempty sets A and B, if R is transitive then A = B.

(e) For all sets A and B, if A = B then R is an equivalence relation.

(a) This statement is true. Here is a proof. Suppose that A and B are sets so that R is
reflexive. We want to prove that A = B. It is enough to prove that A ⊆ B. So let
a ∈ A be arbitrary. Since R is reflexive and a ∈ A∪B, aRa must be true, which means
that (a, a) ∈ A × B. But this means that a ∈ B. Therefore A ⊆ B. In the same way
we could prove that B ⊆ A, so A = B.

(b) This statement is false. A counterexample is A = {1} and B = ∅. Then A × B = ∅
(this is Exercise 27 on page 292), so no elements can be related by R. Thus R = ∅, and
so R is symmetric vacuously. However A 6= B.

(c) This statement is true. Here is a proof. Suppose that A and B are nonempty sets so
that R is symmetric. We want to prove that A = B. Once again it is enough to prove
that A ⊆ B. So let a ∈ A be arbitrary, and let b be any element in B, which we know
exists because B 6= ∅. Then (a, b) ∈ A × B, so aRb. Since R is symmetric, this means
that bRa must be true, so (b, a) ∈ A×B. But this means that a ∈ B. Therefore A ⊆ B.
In the same way we could prove that B ⊆ A, so A = B.

(d) This statement is false. A counterexample is A = {1} and B = ∅. Then again A×B = ∅
and so R = ∅. Thus R is transitive vacuously. However A 6= B.

(e) This statement is true. Here is a proof. Let A = B be an arbitrary set. Then A∪B = A,
so R is defined by: for all x, y ∈ A, xRy if and only if (x, y) ∈ A×A. But (x, y) ∈ A×A

for all x, y ∈ A, so xRy for all x, y ∈ A. Thus it is clear that R is reflexive, symmetric
and transitive, so R is an equivalence relation.

Note that in this case R has just one equivalence class, namely all of A, since [x] = A

for all x ∈ A.
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