MATHEMATICS 323 "INTRODUCTION TO MATHEMATICAL STATISTICS" **Summer 2005**

Syllabus and Important Dates.

NOTE: All quizzes will be written in the lab. No formula sheets permitted for the quizzes.

<u>Midterm</u> will be written in class on <u>July 29th</u>. <u>Final</u> will be written on <u>August 15th</u> in class. One-sided formula sheet permitted.

Schedule for quizzes and midterm

Quiz 1 July 13th

Quiz 2 July 20th

Quiz 3 July 27th

Midterm July 29th (written in class)

Quiz 4 August 3rd

Quiz 5 August 10th

Final August 15th (written in class)

No classes on Monday, July 25th and Monday, August 1st.

Topics Covered

- (1) Chapter 5: Bivariate and Multivariate probability distributions, Marginal and Conditional Probability Distributions; Independent Random variables; Covariance and other expectations. The Bivariate Normal Distribution.
- (2) Chapter 6 (6.1-6.7): Functions of Random Variables, including the method of transformation (Jacobian method) and the method of moment generating functions for more than one random variable. Order statistics and their applications.
- (3) Chapter 7 (7.2): Sampling distributions; the derivation for the chi-square, t, and F distribution; Revisit the central limit theorem and derive the distribution of the sample variance.
- (4) Chapter 8 (8.1-8.4): Estimation; unbiasedness, mean square error, evaluation of point estimators. Confidence interval estimation for the difference between two population parameters; confidence interval estimation for the population variance.
- (5) Chapter 9 (9.2, 9.3, 9.6, 9.7): Some properties of point estimators, including relative efficiency, consistency; some common method of obtaining point estimators, including the method of moments and maximum likelihood estimation.
- (6) Chapter 10: Developing formal hypothesis tests using discrete and continuous distribution theory, Type I and Type II errors, power of a test and the Neyman-Pearson Lemma, P-values, uniformly most powerful tests, likelihood ratio test.
- (7) Chapter 11 (11.1-11.9): Simple Linear Regression Analysis: Least squares estimation, inference for estimated coefficients, prediction, model assessment, correlation and the coefficient of determination.