MATH 353 Handout \#0: Review

A

1. Sketch some level curves of the function $f(x, y)=x^{3}-3 x y^{2}$. Try to sketch the graph of this function. Why do you think this function is called a monkey saddle?

B

2. Find the gradient: $T(x, y, z)=x^{3} y+y^{3} z+z^{3} x$.
3. Let $f(x, y)=x^{3} /\left(x^{2}+y^{2}\right)$ when $(x, y) \neq(0,0)$ and $f(x, y)=0$ otherwise. Calculate the partial derivatives $f_{x}(0,0), f_{y}(0,0), f_{x y}(0,0)$ and $f_{y x}(0,0)$ or explain why they do not exist.
4. Find the gradient and second-order partial derivatives of $u(x, y)=$ $k(\ln (\cos (x / k))-\ln (\cos (y / k))$ where k is any non-zero constant.
5. Find the gradient and second-order partial derivatives of $f(x, y)=$ $2 x y^{2}-x^{2} y+4 x y$.

C
6. Determine whether or not the sequence converges. If it does, find the limit.
(a) $a_{n}=\frac{(-1)^{n} e^{n}}{n!}$
(b) $a_{n}=\frac{\ln (n)}{\text { arctann }}$
(c) $a_{n}=\frac{n^{100}+2^{n} \pi}{2^{n}}$

