
MATH 353
Handout #2 Solutions

1. Find absolute extrema of f(x, y) = 1
8
x3 + y3 on the circle (disk)

x2 + y2 ≤ 65

SOLUTION:

The function is continuous and the set is closed and bounded. The first
C.P. is on the inside. Solve ∇f = 0, so

3

8
x2 = 0 3y2 = 0

The CP is (0, 0)

For C.P on the boundary use Langrange multiplier method where
g(x, y) = x2 + y2 = 65. Solve ∇f = λ∇g
3
8
x2 = λ2x →→→ x = 0 or 3

8
x = 2λ

3y2 = λ2y →→→ y = 0 or 3y = 2λ

If x = 0 back to the circle; y = ±
√

65. Similarly for y = 0, then
x = ±

√
65.

For xy 6= 0 then 2λ = 3
8
x = 3y =⇒ x = 8y back to the circle 64

y2 + y2 = 65. Thus y = ±1 and x = ±8.

There are 7 critical points:(0, 0) ,
(
0,±

√
65

)
,
(
±
√

65, 0
)
, (±8,±1).

Test values of f : ..0......± 65
√

65....± 65
8

√
65.....± 65

So max is 65
√

65 at
(
0,
√

65
)

and min is −65
√

65 at
(
0,−

√
65

)
.

2. Find the absolute extrema of f(x, y) = x2 + y2

on the surface S =
{

1
8
x3 + y3 = 65, x ≥ 0, y ≥ 0.

}
.

SOLUTION

Notice that we need x, y ≥ 0 to make S bounded. So g(x, y) = 1
8
x3 +

y3 = 65, x ≥ 0, y ≥ 0

Solve ∇f = λ∇g

2x = λ3
8
x2. →→→ x = 0 or 16

x
= 3λ

2y = λ3y2 →→→→ y = 0 or 2
y

= 3λ
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For x = 0 back to S y = 3
√

65 = 4.02. Similarly for y = 0, x = 2 3
√

65

For xy 6= 0 we have

3λ = 16
x

= 2
y

so x = 8y back to S 64y3 + y3 = 65

y = 1, x = 8

3 critical points :
(
0, 3
√

65
) (

2 3
√

65, 0
)

(8, 1)

values of f 65
2
3 = 16.1 4 · 65

2
3 = 64.66 65

So max is 65 at (8, 1) and min is 65
2
3 at

(
0, 3
√

65
)
.

3. Find absolute maxim and minima of f(x, y) = 2y2 − x + x2

inside and on the triangle T with vertices O(0, 0), A(1, 1), B(1,−1).

SOLUTION

Since the function is continuous and the set is closed and bounded we
have to find all critical points inside and on the boundary,and check
the values at those.

For critical points inside solve ∇f = 0

fx = 2x− 1 = 0, fy = 4y = 0 so x = 1
2
, y = 0

Now, the boundary of T consists of 3 line segments

B1 = {y = x, 0 ≤ x ≤ 1} and B2 = {y = −x, 0 ≤ x ≤ 1}
f(x,±x) = 3x2 − x = h(x) ,h′(x) = 6x− 1 = 0 for x = 1

6
→ y = ±1

6

and the ends(corners)

B3 = {x = 1,−1 ≤ y ≤ 1} and f on B3 is f(1, y) = g(y) = 2y2

and g′(x) = 4y = 0 for y = 0 , x = 1

Together all critical points in T and on ∂T are(
1
2
, 0

)
,
(

1
6
,±1

6

)
, (0, 0) , (1,±1) , (1, 0)

Check the values of f

......−1
4

.....−1
12

..........0..........2........0

So abs.max.value is 2 at the points (1,±1)

and abs.min. value is −1
4

at the point
(

1
2
, 0

)
.
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4. Find the point on the plane x − 2y − z = 3 closest to the point
P (1,−1, 2) .

Justify!

Solution:

We are looking for minimum of the distance to P or the square of
distance

f(x, y, z) = (x− 1)2+(y + 1)2+(z − 2)2 and the constraint g(x, y, z) =
x− 2y − z = 3

Solve ∇f = λ∇g

2 (x− 1) = λ

2 (y + 1) = −2λ..................λ = 2x− 2 = −y − 1 = 4− 2z

2(z − 2) = −λ...........................1− 2x = y..........z = 3− x

back to the plane

x− 2(1− 2x)− (3− x) = 6x− 5 = 3 →→→ x = 4
3
, y = −5

3
, z = 5

3

and the C.P. point is
(

4
3
, −5

3
, 5

3

)
To justify that we have found minimum

the set is not bounded but if we take a bounded part we have to have
maximum and minimum

but the maximum will be on the boundary since the distance is increas-
ing when we move far away

therefore the critical point must be minimum.

5. Find absolute maximum of f(x, y, z) = xyz

largest box with sides x, y, z on{(x, y, z) ; 2xy +2xz +3yz = 144, x ≥
0, y ≥ 0, z ≥ 0}
(You may assume that there is an absolute maximum)

Solution:

∇f = λ∇g where g(x, y, z) = 2xy + 2xz + 3yz = 144

yz = λ(2y + 2z) if y = 0 or z = 0 or x = 0 then f = 0

so we can assume that all xyz 6= 0
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xz = λ(2x + 3z) 1
λ

= 2y+2z
yz

= 2x+3z
xz

= 2x+3y
xy

xy = λ(2x + 3y)

from the first equality (cancel z) ......2yx+2xz = 2xy+3zy → 2x = 3y

from the second equality(cancel x)....2xy + 3zy = 2xz + 3zy → z = y

back to the surface 3z2 + 3z2 + 3z2 = 9z2 = 144 → z2 = 144
9

= 16 →
z = ±4

and critical points are (±6,±4,±4) ,values of f are ±96

so maximum is 96 at the point (6, 4, 4).

6. (a) Evaluate
∫ 3

1

(∫ x2

−x
xe2ydy

)
dx.

(b) Switch the order of integration in the integral above and sketch
the region D.

Solution for (a):

I =
∫ 3

1

(∫ x2

−x
xe2ydy

)
dx =

∫ 3

1
x

(∫ x2

−x
e2ydy

)
dx. =

∫ 3

1
x

([
e2y

2

]y=x2

y=−x

)
dx =

1
2

∫ 3

1
x

(
e2x2 − e−2x

)
dx =

= 1
2

∫ 3

1
xe2x2

dx (subst)− 1
2

∫ 3

1
xe−2xdx (byparts) =

= 1
8

[
e2x2

]3

1
− 1

2

[
x e−2x

−2

]3

1
− 1

4

∫ 3

1
e−2xdx = 1

8
[e18 − e2] + 1

4
[3e−6 − e−2] +

1
8
[e−6 − e−2] = ..

For (b):

since we have three ”left ends” we have to split the domain D = D1∪D2

∪D3where

D1 = {(x, y) ;−3 ≤ y ≤ −1,−y ≤ x ≤ 3} , D2 = {(x, y) ;−1 < y ≤ 1, 1 ≤ x ≤ 3}
and D3 =

{
(x, y) ; 1 < y ≤ 9,

√
y ≤ x ≤ 3

}
and the integral

I =
∫ −1

−3

(∫ 3

−y
xe2ydx

)
dy +

∫ 1

−1

(∫ 3

1
xe2ydx

)
dy +

∫ 9

1

(∫ 3
√

y
xe2ydx

)
dy.

7. Evaluate
∫ ∫

D

√
2− x2dA where D is smaller region between y = x2

and x2 + y2 = 2.
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and sketch the region

Solution:

find the intersection of the parabola y = x2 and the circle x2 + y2 = 2

y2 + y − 2 = 0 (y − 1) (y + 2) = 0

but y must be positive so y = 1 and x = ±1 and D = {−1 ≤ x ≤ 1
x2 ≤ y ≤

√
2− x2}∫ ∫

D

√
2− x2dA =

∫ 1

−1

√
2− x2

(∫ √2−x2

x2 dy
)

dx =
∫ 1

−1

√
2− x2

(√
2− x2 − x2

)
dx =

=
∫ 1

−1
(2− x2 − x2

√
2− x2)dx = (evenf.) = 2

∫ 1

0
...dx =

=2·2−2
[

x3

3

]1

0
−2

(
Tablea =

√
2
) [

x
8
(2x2 − 2)

√
2− x2 + 1

2
arcsin x√

2

]1

0
=

= 4− 2
3

+ 0− arcsin 1√
2

= 10
3
− π

4
.

8. Switch the order of integration in the integral
∫ π

4

0

(∫ tan x

0
f(x, y)dy

)
dx.

Solution:

given 0 ≤ x ≤ π
4

and 0 ≤ y ≤ tan x sketch

y = tan x is equivalent to arctan y = x for x ∈
(
−π

2
, π

2

)
and tan π

4
= 1

so 0 ≤ y ≤ 1 and arctan y ≤ x ≤ π
4

and the integral∫ π
4

0

(∫ tan x

0
f(x, y)dy

)
dx =

∫ 1

0

(∫ π
4

arctan y
f(x, y)dx

)
dy.

9. For
∫ ∫

D
1

x2+y
dA where D is the region between the x-axis and y =

4− x2

sketch the region D and set up BOTH iterated integrals and evaluate
one of them.

( Hint: limx→0+x ln x = 0).

Solution:

the region is above x-axis and below parabola y = 4− x2

so −2 ≤ x ≤ 2 0 ≤ y ≤ 4 − x2 or 0 ≤ y ≤ 4 −
√

4− y ≤
x ≤

√
4− y
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and∫ ∫
D

1
x2+y

dA =
∫ 2

−2

(∫ 4−x2

0
1

x2+y
dy

)
dx =

∫ 4

0

(∫ √4−y

−
√

4−y
1

x2+y
dx

)
dy

evaluate the first ordered iterated integrals∫ 2

−2

(∫ 4−x2

0
1

x2+y
dy

)
dx =

∫ 2

−2
[ln (x2 + y)]

y=4−x2

y=0 dx =
∫ 2

−2
(ln 4− ln x2) dx =

4 ln 4− 2
∫ 2

0
ln x2dx =

= 4 ln 4 − 4
∫ 2

0
ln xdx = 8 ln 2 − 4 [x ln x− x]20 = 8. (Otherwise ln x2 =

2 ln |x|!),
using the limit of x ln x → 0 as x → 0+.

The other way∫ 4

0

(∫ √4−y

−
√

4−y
1

x2+y
dx

)
dy =

∫ 4

0

([
1√
y
arctan x√

y

]x=
√

4−y

x=−
√

4−y

)
dy = ....harder

10. Calculate the volume of the solid below the surface z = e(y−1)2and
above

the triangle T with vertices A (−1, 0) , B (0, 1) , C (2, 0) with vertical
sides.

Solution:

V =
∫ ∫

T

e(y−1)2 dxdy it is easier to slice the triangle horizontally

0 ≤ y ≤ 1 lineAB ≤ x ≤ lineBC

where line AB y = x + 1 or x = y − 1

lineBC y = 1− 1
2
x or x = 2− 2y

so V =
∫ 1

0

(
e(y−1)2

∫ 2−2y

y−1
dx

)
dy =

∫ 1

0
e(y−1)2 (3− 3y) dy = −3

2

∫ 0

1
eudu =

3
2
[e− 1]

by subst. u = (y − 1)2
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