The University of Calgary Department of Mathematics and Statistics MATH 353 $\,$ Handout #3

- 1. Find the volume of the solid S: below $z = \cos \sqrt{x^2 + y^2}$ and z = 0 (one part only).
- 2. Evaluate the integral $\int \int_D e^{3(x^2+y^2)} dx dy, \text{where } D=\{(x,y); y\geq 0, 1\leq x^2+y^2\leq 4\}.$
- 3. Find all k for which the integral $\int \int_T \frac{1}{(y-2x)^k} dA$ is convergent, where T is the triangle with vertices (0,0), (0,4) and (2,4).
- 4. Evaluate $\int \int_D \frac{dxdy}{\sqrt{x^2+y^2}}$ where $D = \{x^2 + y^2 \le 2, x \ge 1, y \ge 0\}$.
- 5. Evaluate the integral $\int \int_D \frac{x \sin \pi (x^2+y^2)}{\sqrt{x^2+y^2}} dx dy$, where $D=\{(x,y); y \geq x \geq 0, x^2+y^2 \leq 1\}$.
- 6. Evaluate the integral $\int \int_D e^{-x^2y} dA$ if it is convergent, where $D=\{(x,y); x\geq 1; 0\leq y\leq \frac{1}{x^2}\}.$
- 7. Set up the integral $\int \int_D (x^2+y^2) dx dy \text{ where } D=\{(x,y)\,;y\geq 1,x^2+y^2\leq 2\}$ as iterated integrals in both
 - (a) cartesian coordinates,
 - (b) and polar coordinates, and then evaluate (only once).
- 8. Evaluate the integral $\int \int_D e^{-x-y} dA$ if it is convergent, where $D = \{(x,y); x \geq 1; 0 \leq y \leq x\}.$
- 9. Set up the integral $\int \int_D \frac{1}{(x^2+y^2)^2} dx dy \text{ where } D = \{(x,y); x+y \ge 1, x^2+y^2 \le 1\}$ as iterated integrals in both
 - (a) cartesian coordinates,
 - (b) and polar coordinates,

and then evaluate (only once).

10. Evaluate the integral $\int \int_D \frac{1+\ln x}{y} \ dA$ if it is convergent, where $D=\{(x,y); 0\leq x\leq e^y; 0\leq y\leq 1\}.$