MATH 353 Handout \#6

1. Evaluate $\oint_{\mathcal{C}} x^{2} y^{2} d x+4 x y^{3} d y$ where \mathcal{C} is the triangle with vertices $(0,0),(1,3)$ and $(0,3)$, oriented positively.
2. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}(x, y)=\left\langle\sqrt{x}+y^{3}, x^{2}+\sqrt{y}\right.$ and \mathcal{C} consists of the arc of the curve $y=\sin x$ from $(0,0)$ to $(\pi, 0)$.
3. Evaluate $\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet d \mathbf{S}$ where $\mathbf{F}(x, y, z)=y z, x z, x y$ and \mathcal{S} is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward.
4. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}\left(e^{-x}, e^{x}, e^{z}\right)$ and \mathcal{C} is the boundary of the part of the plane $2 x+y+2 z=2$ in the first octant.
5. Calculate the flux of $\mathbf{F}(x, y, z)=\left\langle 4 x^{3} z, 4 y^{3} z, 3 z^{4}\right\rangle$ out of the sphere \mathcal{S} with radius R centered at the origin.
6. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet N d s$ where $\mathbf{F}(x, y)=\langle-y, x\rangle$ and \mathcal{C} is the unit circle, oriented positively.
