
MATH 353 Handout #6

1. Evaluate
∮
C x2y2 dx + 4xy3 dy where C is the triangle with vertices

(0, 0), (1, 3) and (0, 3), oriented positively.

This is a good candidate for Green’s Theorem. The integral is equiva-
lent to the double integral

∫∫
D

4y3−2x2ydA where D is the solid triangle
with the same vertices. That is, D = {(x, y)|0 ≤ x ≤ 1; 3x ≤ y ≤ 3}.
So

∮
C x2y2 dx+4xy3 dy =

∫ 1

0

∫ 3

3x
4y3−2x2y dy dx =

∫ 1

0
(y4−x2y2|33x dx =∫ 1

0
81 − 9x2 − 72x4 dx = 81x − 3x3 − (72/5)x5|10 = 78 − (72/5).

2. Evaluate
∫
C F•dr where F(x, y) = 〈

√
x+y3, x2 +

√
y〉 and C consists of

the arc of the curve y = sin x from (0, 0) to (π, 0) and the line segment
from (π, 0) to (0, 0).

Another good candidate for Green’s theorem (sorry, I forgot to scramble
them). The region is D = {(x, y)|0 ≤ y ≤ sin x; 0 ≤ x ≤ 1}. So∫ π

0

∫ sin x

0
2x−3y2 dy dx =

∫ π

0
2xy−y3|sin x

0 dx =
∫ π

0
2x sin x−sin3 x dx =∫ π

0
2x sin x−

∫ π

0
sin3 x dx. The first integral is by parts: let u = 2x and

dv = sin x dx. Then
∫ π

0
2x sin xdx = −2x cos x+2 sin x|π0 = −2π cos π+

2 sin π = 2π. The second integral is by substitution. Write sin3 x =
sin x(1 − cos2 x) and let u = cos x. Then

∫ π

0
sin3 x dx =

∫ π

0
sin x(1 −

cos2 x) dx = − cos x− (1/3) cos3 x|π0 = − cos π − 1/3 cos3 π + 1 + 1/3 =
8/3. Together, the integral is 2π − 8/3. Now, since the curve C is
oriented CLOCKWISE, we have

∫
C F • dr = 8/3 − 2π.

3. Evaluate
∫ ∫

S curlF•dS where F(x, y, z) = yz, xz, xy and S is the part
of the paraboloid z = 9 − x2 − y2 that lies above the plane z = 5,
oriented upward.

This is a good candidate for Stokes’s Theorem. The integral is equal
to

∮
C F • dr where C is the curve of intersection of z = 9− x2 − y2 and

z = 5. That is, C is the curve given by 5 = 9−x2−y2 or x2+y2 = 4 and
z = 5. So a good parametrization is given by r(t) = 〈cos (t), sin (t), 5〉
where 0 ≤ t ≤ 2π. So

∮
C F • dr =

∫ 2π

0
〈yz, xz, xy〉 • (dr/dt)dt =∫ 2π

0
〈5 sin t, 5 cos t, sin t cos t〉•〈− sin t, cos t, 0〉dt =

∫ 2π

0
5(cos2 t−sin2 t) dt =

5
∫ 2π

0
cos 2tdt = (5/2) sin 2t|2π

0 = 0.
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4. Evaluate
∫
C F•dr where F(e−x, ex, ez) and C is the boundary of the part

of the plane 2x+y+2z = 2 in the first octant, oriented counterclockwise
when viewed from above.

Another good candidate for Stokes’s Theoerem, used in the OTHER
direction. Calculate curl(F) as the determinant of i j k

∂/∂x ∂/∂y ∂/∂z
e−x ex ez


which is 〈0, 0, ex〉. The surface S that we will use is the part of the
plane 2x+ y +2z = 2 in the first octant. A normal vector to this plane
is 〈2, 1, 2〉 and a normal vector is N = 〈2/3, 1/3, 2/3〉. So

∫
C F • dr =∫∫

S curl • dS =
∫∫

D
〈0, 0, ex〉 • 〈2/3, 1/3, 2/3〉dA where D is the shadow

of S in the xy-plane. This is the triangle formed by the x-axis, the y-
axis and the intersection of the plane 2x+y+2z = 2 with z = 0, that is
y = 2−2x. So the integral is

∫ 1

0
ex

∫ 2−2x

0
dy dx =

∫ 1

0
2ex−2xex dx. Now

remember that integration by parts tells you that the antiderivative of
xex is xex − ex + C. So the integral is 2ex − 2xex + 2ex|10 = 2e − 2e +
2e − 2 + 0 − 2 = 2e − 4.

5. Calculate the flux of F(x, y, z) = 〈4x3z, 4y3z, 3z4〉 out of the sphere S
with radius R centered at the origin.

The divergence of F is div(F) = 12x2z + 12y2z + 12z3 = 12z(x2 + y2 +
z2) = 12zR2 for any (x, y, z) on the sphere. The Divergence Theorem
says that the flux is equal to

∫∫∫
E

12zR2dV where E is the solid ball
of radius R centered at the origin. Using spherical coordinates, the
integral becomes

12R2

∫ 2π

0

∫ π

0

∫ R

0

ρ cos (φ)ρ2 sin (φ) dρ dφ dθ

= 3R2

∫ 2π

0

∫ π

0

ρ4|R0 cos(φ) sin(φ) dφ dθ

= 3πR6 sin2(φ)|π0 = 0
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6. Evaluate
∫
C F • Nds where F(x, y) = 〈−y, x〉 and C is the unit circle,

oriented positively.

Again, this is a good candidate for the Divergence Theorem, but the 2-
D version. Calculate div(F) = 0 and we immediately get

∫
C F•N ds =∫∫

D
0 dA = 0.
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