MATH 353 Handout \#6

1. Evaluate $\oint_{\mathcal{C}} x^{2} y^{2} d x+4 x y^{3} d y$ where \mathcal{C} is the triangle with vertices $(0,0),(1,3)$ and $(0,3)$, oriented positively.
This is a good candidate for Green's Theorem. The integral is equivalent to the double integral $\iint_{D} 4 y^{3}-2 x^{2} y d A$ where D is the solid triangle with the same vertices. That is, $D=\{(x, y) \mid 0 \leq x \leq 1 ; 3 x \leq y \leq 3\}$. So $\oint_{\mathcal{C}} x^{2} y^{2} d x+4 x y^{3} d y=\int_{0}^{1} \int_{3 x}^{3} 4 y^{3}-2 x^{2} y d y d x=\int_{0}^{1}\left(y^{4}-\left.x^{2} y^{2}\right|_{3 x} ^{3} d x=\right.$ $\int_{0}^{1} 81-9 x^{2}-72 x^{4} d x=81 x-3 x^{3}-\left.(72 / 5) x^{5}\right|_{0} ^{1}=78-(72 / 5)$.
2. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}(x, y)=\left\langle\sqrt{x}+y^{3}, x^{2}+\sqrt{y}\right\rangle$ and \mathcal{C} consists of the arc of the curve $y=\sin x$ from $(0,0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0,0)$.
Another good candidate for Green's theorem (sorry, I forgot to scramble them). The region is $D=\{(x, y) \mid 0 \leq y \leq \sin x ; 0 \leq x \leq 1\}$. So $\int_{0}^{\pi} \int_{0}^{\sin x} 2 x-3 y^{2} d y d x=\int_{0}^{\pi} 2 x y-\left.y^{3}\right|_{0} ^{\sin x} d x=\int_{0}^{\pi} 2 x \sin x-\sin ^{3} x d x=$ $\int_{0}^{\pi} 2 x \sin x-\int_{0}^{\pi} \sin ^{3} x d x$. The first integral is by parts: let $u=2 x$ and $d v=\sin x d x$. Then $\int_{0}^{\pi} 2 x \sin x d x=-2 x \cos x+\left.2 \sin x\right|_{0} ^{\pi}=-2 \pi \cos \pi+$ $2 \sin \pi=2 \pi$. The second integral is by substitution. Write $\sin ^{3} x=$ $\sin x\left(1-\cos ^{2} x\right)$ and let $u=\cos x$. Then $\int_{0}^{\pi} \sin ^{3} x d x=\int_{0}^{\pi} \sin x(1-$ $\left.\cos ^{2} x\right) d x=-\cos x-\left.(1 / 3) \cos ^{3} x\right|_{0} ^{\pi}=-\cos \pi-1 / 3 \cos ^{3} \pi+1+1 / 3=$ $8 / 3$. Together, the integral is $2 \pi-8 / 3$. Now, since the curve \mathcal{C} is oriented CLOCKWISE, we have $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=8 / 3-2 \pi$.
3. Evaluate $\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \bullet d \mathbf{S}$ where $\mathbf{F}(x, y, z)=y z, x z, x y$ and \mathcal{S} is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward.
This is a good candidate for Stokes's Theorem. The integral is equal to $\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where \mathcal{C} is the curve of intersection of $z=9-x^{2}-y^{2}$ and $z=5$. That is, \mathcal{C} is the curve given by $5=9-x^{2}-y^{2}$ or $x^{2}+y^{2}=4$ and $z=5$. So a good parametrization is given by $\mathbf{r}(t)=\langle\cos (t), \sin (t), 5\rangle$ where $0 \leq t \leq 2 \pi$. So $\oint_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=\int_{0}^{2 \pi}\langle y z, x z, x y\rangle \bullet(d \mathbf{r} / d t) d t=$ $\int_{0}^{2 \pi}\langle 5 \sin t, 5 \cos t, \sin t \cos t\rangle \bullet\langle-\sin t, \cos t, 0\rangle d t=\int_{0}^{2 \pi} 5\left(\cos ^{2} t-\sin ^{2} t\right) d t=$ $5 \int_{0}^{2 \pi} \cos 2 t d t=\left.(5 / 2) \sin 2 t\right|_{0} ^{2 \pi}=0$.
4. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}\left(e^{-x}, e^{x}, e^{z}\right)$ and \mathcal{C} is the boundary of the part of the plane $2 x+y+2 z=2$ in the first octant, oriented counterclockwise when viewed from above.

Another good candidate for Stokes's Theoerem, used in the OTHER direction. Calculate $\operatorname{curl}(\mathbf{F})$ as the determinant of

$$
\left[\begin{array}{ccc}
i & j & k \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
e^{-x} & e^{x} & e^{z}
\end{array}\right]
$$

which is $\left\langle 0,0, e^{x}\right\rangle$. The surface \mathcal{S} that we will use is the part of the plane $2 x+y+2 z=2$ in the first octant. A normal vector to this plane is $\langle 2,1,2\rangle$ and a normal vector is $N=\langle 2 / 3,1 / 3,2 / 3\rangle$. So $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=$ $\iint_{\mathcal{S}} \operatorname{curl} \bullet d S=\iint_{D}\left\langle 0,0, e^{x}\right\rangle \bullet\langle 2 / 3,1 / 3,2 / 3\rangle d A$ where D is the shadow of S in the $x y$-plane. This is the triangle formed by the x-axis, the y axis and the intersection of the plane $2 x+y+2 z=2$ with $z=0$, that is $y=2-2 x$. So the integral is $\int_{0}^{1} e^{x} \int_{0}^{2-2 x} d y d x=\int_{0}^{1} 2 e^{x}-2 x e^{x} d x$. Now remember that integration by parts tells you that the antiderivative of $x e^{x}$ is $x e^{x}-e^{x}+C$. So the integral is $2 e^{x}-2 x e^{x}+\left.2 e^{x}\right|_{0} ^{1}=2 e-2 e+$ $2 e-2+0-2=2 e-4$.
5. Calculate the flux of $\mathbf{F}(x, y, z)=\left\langle 4 x^{3} z, 4 y^{3} z, 3 z^{4}\right\rangle$ out of the sphere \mathcal{S} with radius R centered at the origin.
The divergence of \mathbf{F} is $\operatorname{div}(\mathbf{F})=12 x^{2} z+12 y^{2} z+12 z^{3}=12 z\left(x^{2}+y^{2}+\right.$ $\left.z^{2}\right)=12 z R^{2}$ for any (x, y, z) on the sphere. The Divergence Theorem says that the flux is equal to $\iiint_{E} 12 z R^{2} d V$ where E is the solid ball of radius R centered at the origin. Using spherical coordinates, the integral becomes

$$
\begin{gathered}
12 R^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} \rho \cos (\phi) \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
=\left.3 R^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho^{4}\right|_{0} ^{R} \cos (\phi) \sin (\phi) d \phi d \theta \\
=\left.3 \pi R^{6} \sin ^{2}(\phi)\right|_{0} ^{\pi}=0
\end{gathered}
$$

6. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet N d s$ where $\mathbf{F}(x, y)=\langle-y, x\rangle$ and \mathcal{C} is the unit circle, oriented positively.
Again, this is a good candidate for the Divergence Theorem, but the 2D version. Calculate $\operatorname{div}(\mathbf{F})=0$ and we immediately get $\int_{\mathcal{C}} \mathbf{F} \bullet N d s=$ $\iint_{D} 0 d A=0$.
