MATH 353 Midterm Review

1. Let $S=\{(x, y) \mid \sqrt{y-x}<3\}$.
(a) Find the boundary ∂S.
(b) Is the set open, closed or neither?
(c) Is the set bounded?
(d) Sketch the set.
2. Let $S=\{(r, \theta) \mid 0<r \leq \cos (\theta), 0 \leq \theta \leq \pi\}$ be a set in the plane described in polar coordinates.
(a) Is the set open, closed or neither?
(b) Find the boundary ∂S.
3. Find the critical points of the function $f(x, y)=\left(x^{2}+y\right) e^{y / 2}$.
4. Find the absolute maximum and minimum values of $f(x, y)=4 x y^{2}-$ $x^{2} y^{2}-x y^{3}$ on the closed triangle T in the $x y$-plane with vertices $(0,0)$, $(0,6)$ and $(6,0)$.
5. Find the absolute minimum of $f(x, y)=1-\sqrt{1-x^{2}-y^{2}}$ on the triangle T with vertices $(-1,0),(1 / 2,1 / 2)$ and $(1 / 2,-1 / 2)$.
6. Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the ellipsoid $9 x^{2}+36 y^{2}+4 z^{2}=36$.
7. Evaluate $\iint_{T} \frac{\sin (y)}{1-y} d A$ where T is the triangular region bounded by the x-axis, the y-axis and the line $y=1-x$, if it is convergent.
8. Evaluate $\iint_{S} \frac{1}{x^{2}+y^{2}} d A$ where S is the region in the first quadrant bounded by the x-axis, the y-axis and the circle $x^{2}+y^{2}=1$, if it is convergent.
9. Evaluate $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{n / 2}} d A$ where n is an integer and D is the region bounded by the circles centered at the origin of radii r and R where $0<r<R$. For what values of n does the integral have a limit as $r \rightarrow 0^{+}$?
10. Evaluate the integral

$$
\iiint_{R} z d V
$$

over the region R between the paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$ using cylindrical or spherical coordinates.
11. Find the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=$ 1 and the sphere $x^{2}+y^{2}+z^{2}=4$.
12. Evaluate $\iiint_{E} x^{2} d V$, where E is bounded by the $x z$-plane and the hemispheres $y=\sqrt{9-x^{2}-z^{2}}$ and $y=\sqrt{16-x^{2}-z^{2}}$.
13. Use the transformation $u=x-y, v=x+y$ to evaluate $\iint_{R} \frac{x-y}{x+y} d A$, where R is the square with vertices $(0,2),(1,1),(2,2)$ and $(1,3)$.

