1. For each $S \subset R^{2}$, find ∂S. Is S open, closed, bounded? Sketch S as well.
(a) $S=\left\{(x, y): \frac{|x|}{|y|} \leq 1\right\}$,
(b) $S=\{(x, y): y-2 x=1,1 \leq y \leq 3\}$,
(c) $S=\{(x, y): y-2 x \leq 1,1 \leq y \leq 3\}$,
(d) $S=\{(x, y): \ln (x y) \leq 0\}$,
(e) $S=\left\{(x, y): 0<x^{2}+y^{2}<4\right\}$,
(f) $S=\left\{(x, y): 0<x^{2}+y^{2} \leq 4\right\}$.
2. Classify all critical points of $f(x, y)=2 x y^{2}-x^{2} y+4 x y$. Find the absolute maximum, absolute minimum if it exists. Also, find the absolute maximum and absolute minimum of f on the three edges of the triangle with vertices $A=(0,0), B=(1,0)$, $C=(0,1)$.
3. Classify all critical points of $f(x, y)=3 y^{3}-x^{2} y+x^{2}$.
4. (Problem \# 3 of ch 13.1 in the textbook). Find and classify all critical points of $f(x, y)=x^{3}+y^{3}-3 x y$.
5. (Problem \# 15 of ch 13.1 in the textbook). Find and classify all critical points of $f(x, y)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{y}\right)$.
6. (Problem \# 17 of ch 13.1 in the textbook). Find and classify all critical points of $f(x, y, z)=x y+x^{2} z-x^{2}-y-z^{2}$.
7. (Problem \# 23 of ch 13.1 in the textbook). Postal regulations require that the sum of the height and girth(horizontal perimeter) of a package should not exceed L units. Find the largest volume of a rectangular box that can satisfy this requirement.
