The University of Calgary

 Department of Mathematics and Statistics MATH 353 Handout \#3 Solutions1. The intersection of the two surfaces happens when $z=\cos \sqrt{x^{2}+y^{2}}=0$, and this is exactly when $\sqrt{x^{2}+y^{2}}=\pi / 2$, i.e. $x^{2}+y^{2}=(\pi / 2)^{2}$. So $D=\left\{(x, y) \left\lvert\, x^{2}+y^{2} \leq\left(\frac{\pi}{2}\right)^{2}\right.\right\}$ and

$$
V=\iint_{D} \cos \sqrt{x^{2}+y^{2}} d x d y=\iint_{D} r \cos r d r d \theta
$$

(polar coord.) where in polar coordinates $D=\left\{(r, \theta) \left\lvert\, 0<r \leq \frac{\pi}{2}\right. ; 0 \leq \theta<2 \pi\right\}$. Using integration by parts $V=2 \pi \int_{0}^{\frac{\pi}{2}} r \cos r d r=2 \pi\left[r \sin r-\iint \sin r d e\right]_{0}^{\frac{\pi}{2}}=\pi^{2}+2 \pi[\cos r]_{0}^{\frac{\pi}{2}}=$ $\pi^{2}-2 \pi$.
2. Using polar coord.

$$
\iint_{D} e^{3\left(x^{2}+y^{2}\right)} d x d y=\iint_{D} e^{3 r^{2}} r d r d \theta=\pi\left[\frac{e^{3 r^{2}}}{6}\right]_{1}^{2}=\frac{\pi}{6}\left(e^{12}-e^{3}\right)
$$

where $D=\{0 \leq \theta \leq \pi, 1 \leq r \leq 2\}$
3. The triangle is $T=\{0 \leq x \leq 2,2 x \leq y \leq 4\}$ so

$$
I=\iint_{T} \frac{1}{(y-2 x)^{k}} d A=\int_{0}^{2}\left(\int_{2 x}^{4}(y-2 x)^{-k} d y\right) d x=\int_{0}^{2}\left[\frac{(y-2 x)^{1-k}}{1-k}\right]_{y \rightarrow 2 x}^{y=4} d x
$$

for $k \neq 1$.
Then $\lim _{y \rightarrow 2 x}(y-2 x)^{1-k}=0$ for $1-k>0$ and diverges for $1-k<0$.
For $k=1$, the anti-derivative is a logarithm and $[\ln (y-2 x)]_{\substack{ \\y=4}}^{\substack{\text { a }}}=+\infty$. So the integral is convergent for only $k<1$ and

$$
I=\int_{0}^{2}\left[\frac{(4-2 x)^{1-k}}{1-k}\right] d x=\left[\frac{(4-2 x)^{2-k}}{(-2)(1-k)(2-k)}\right]_{0}^{2}=\frac{2}{(1-k)(2-k)}
$$

since $2-k>0$.
4. Use polar coordinates, let $x=r \cos \theta, y=r \sin \theta$ then $I=\iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y=\iint_{D} d r d \theta$. The boundary of D in polars can be obtained by replacing x by $r \cos \theta$ and y by $r \sin \theta$: $x^{2}+y^{2} \leq 2 \Longrightarrow r^{2} \leq 2 \Longrightarrow r \leq \sqrt{2} . x \geq 1 \Longrightarrow r \cos \theta \geq 1 \Longrightarrow r \geq \frac{1}{\cos \theta}, y \geq 0 \Longrightarrow \sin \theta \geq$ $0 \Longrightarrow \theta \in[0, \pi]$, on the other side, $\frac{1}{\cos \theta} \leq r \leq 2 \Longrightarrow \frac{1}{\cos \theta} \leq 2 \Longrightarrow \cos \theta \geq \frac{1}{\sqrt{2}} \Longrightarrow \theta \in\left[0, \frac{\pi}{4}\right]$, Then

$$
\begin{aligned}
I & =\int_{0}^{\pi / 4} \int_{\frac{1}{\cos \theta}}^{\sqrt{2}} d r d \theta=\int_{0}^{\frac{\pi}{4}}\left(\sqrt{2}-\frac{1}{\cos \theta}\right) d \theta \\
& =\frac{\sqrt{2} \pi}{4}-(\ln |\sec \theta+\tan \theta|)_{0}^{\frac{\pi}{4}}=\frac{\sqrt{2} \pi}{4}-\ln (\sqrt{2}+1)
\end{aligned}
$$

5. $D=\left\{x \in(1,+\infty), 0 \leq y \leq \frac{1}{x^{2}}\right\}$ is unbounded so

$$
\begin{aligned}
I & =\iint_{D} e^{-x^{2} y} d A=\int_{1}^{\infty}\left(\int_{0}^{\frac{1}{x^{2}}} e^{-x^{2} y} d y\right) d x \\
& =\int_{1}^{\infty}\left[\frac{e^{-x^{2} y}}{-x^{2}}\right]_{y=0}^{y=\frac{1}{x^{2}}} d x=\int_{1}^{\infty}\left[\frac{e^{-1}-1}{-x^{2}}\right] d x \\
& =\left(\frac{1}{e}-1\right)\left[\frac{1}{x}\right]_{x=1}^{x \rightarrow \infty}=1-\frac{1}{e} .
\end{aligned}
$$

6. The function is unbounded

$$
\begin{aligned}
I & =\iint_{D} \frac{1+\ln x}{y} d A=\int_{0}^{1} \frac{1}{y}\left(\int_{0}^{e^{y}}(1+\ln x) d x\right) d y \\
& =\int_{0}^{1} \frac{1}{y}[x \ln x]_{0}^{e^{y}} d y=\int_{0}^{1} \frac{1}{y}\left(e^{y} y\right) d y \quad\left(\lim _{\mathbf{x} \rightarrow \mathbf{0}+} \mathbf{x} \ln \mathbf{x}=\mathbf{0}\right) \\
& =e-1
\end{aligned}
$$

7.

$$
\begin{aligned}
\iiint_{R} y z^{2} e^{-x y z} d V & =\int_{0}^{1} d z \int_{0}^{1} d y \int_{0}^{1} y z^{2} e^{-x y z} d x \\
& =\int_{0}^{1} d z \int_{0}^{1}\left(-\left.z e^{-x y z}\right|_{x=0} ^{x=1}\right) d y=\int_{0}^{1} d z \int_{0}^{1}\left(-z e^{-y z}+z\right) d y \\
& =\left.\int_{0}^{1}\left(z y+e^{-y z}\right)\right|_{y=0} ^{y=1} d z=\int_{0}^{1}\left(z+e^{-z}-1\right) d z \\
& =\left.\left(\frac{z^{2}}{2}-e^{-z}-z\right)\right|_{\mid z=0} ^{z=1}=\frac{1}{2}-\frac{1}{e}
\end{aligned}
$$

8.

$$
\begin{aligned}
\iiint_{T} x d V & =\int_{0}^{1} d z \int_{1-z}^{1} d y \int_{2-z-y}^{1} x d x \\
& =\left.\int_{0}^{1} d z \int_{1-z}^{1}\left(\frac{x^{2}}{2}\right)\right|_{x=2-z-y} ^{x=1} d y=\int_{0}^{1} d z \int_{1-z}^{1}\left(\frac{1}{2}-\frac{1}{2}(2-z-y)^{2}\right) d y \\
& =\left.\int_{0}^{1}\left(\frac{y}{2}+\frac{(2-z-y)^{3}}{6}\right)\right|_{y=1-z} ^{y=1} d z=\int_{0}^{1}\left(\frac{z}{2}+\frac{(1-z)^{3}-1}{6}\right) d z \\
& =\left.\left(\frac{z^{2}}{4}-\frac{(1-z)^{4}}{24}-\frac{z}{6}\right)\right|_{z=0} ^{z=1}=\frac{1}{4}-\frac{1}{6}+\frac{1}{24}=\frac{1}{8} .
\end{aligned}
$$

9. There are five other possible orders of integration, so how to judge which of these five to use? Because integrating $e^{x^{3}}$ with respect to x is impossible as it stands, that suggests leaving the $d x$ integral for last, integrating first with respect to y and then z, or vice versa. So let's try the following order: first $d y$, then $d z$ then $d x$. From the original iterated integral, the inequalities satisfied by the three variables are given as
(a): $0 \leq z \leq 1$, (b): $z \leq x \leq 1$ and (c): $0 \leq y \leq x$.

Since x is the last variable to be integrated, we need to find the constant upper and lower limits for it. From (b), we have $x \leq 1$, also from (b), we have $x \geq z$, but z is not a constant, so we combine (a) and (b) and obtain $0 \leq z \leq x$ so $0 \leq x$, thus $0 \leq x \leq 1$.

We then determine the upper and lower limits for z, obviously the upper and lower limits for z can be functions of x but can not contain y. From (b), we have $z \leq x$ so the upper limit for z is x, from (a), we have $0 \leq z$ so the lower limit for z is 0 , thus $0 \leq z \leq x$.

We finally determine the upper and lower limits for y, and they can be functions of both x and z. From (c), we have $0 \leq y \leq x$. So we obtain the following iterated integral:

$$
\begin{aligned}
\int_{0}^{1} d z \int_{z}^{1} d x \int_{0}^{x} e^{x^{3}} d y & =\int_{0}^{1} d x \int_{0}^{x} d z \int_{0}^{x} e^{x^{3}} d y \\
& =\left.\int_{0}^{1} d x \int_{0}^{x}\left(y e^{x^{3}}\right)\right|_{y=0} ^{y=x} d z \\
& =\int_{0}^{1} d x \int_{0}^{x} x e^{x^{3}} d z=\left.\int_{0}^{1}\left(z x e^{x^{3}}\right)\right|_{z=0} ^{z=x} d x \\
& =\int_{0}^{1} x^{2} e^{x^{3}} d x=\left.\frac{1}{3}\left(e^{x^{3}}\right)\right|_{x=0} ^{x=1}=\frac{e-1}{3}
\end{aligned}
$$

Remark : The order of integration first $d z$, then $d y$, last $d x$ works about as easily as the order used above.

