MATH 353 Handout \#3 - Winter 2010

1. Find the volume of the solid S which is below $z=\cos \left(\sqrt{x^{2}+y^{2}}\right)$ and above $z=0$, where also $x^{2}+y^{2} \leq(\pi / 2)^{2}$.
2. Evaluate the integral $\iint_{D} e^{3\left(x^{2}+y^{2}\right)} d x d y$, where $D=\left\{(x, y): y \geq 0,1 \leq x^{2}+y^{2} \leq\right.$ $4\}$.
3. Find all k for which the integral $\iint_{T} \frac{1}{(y-2 x)^{k}} d x d y$ is convergent, where T is the triangle with vertices $(0,0),(0,4)$ and $(2,4)$.
4. Evaluate $\iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y$, where $D=\left\{x^{2}+y^{2} \leq 2, x \geq 1, y \geq 0\right\}$.
5. Evaluate the integral $\iint_{D} e^{-x^{2} y} d A$ if it is convergent, where $D=\left\{(x, y): x \geq 1,0 \leq y \leq \frac{1}{x^{2}}\right\}$.
6. Evaluate the integral $\iint_{D} \frac{1+\ln x}{y} d A$ if it is convergent, where $D=\{(x, y): 0 \leq$ $\left.x \leq e^{y}, 0 \leq y \leq 1\right\}$.
7. (14.5-8) Evaluate the triple integral $\iiint_{R} y z^{2} e^{-x y z} d V$ over the cube $0 \leq x, y, z \leq 1$.
8. (14.5-15) Find $\iiint_{T} x d V$ where T is the tetrahedron bounded by the planes $x=1, y=1, z=1$ and $x+y+z=2$.
9. (14.5-27) Evaluate the iterated integral by reiterating it in a different order: $\int_{0}^{1} d z \int_{z}^{1} d x \int_{0}^{x} e^{x^{3}} d y$.
