The University of Calgary Department of Mathematics and Statistics MATH 353 Handout \#4 Answers

1. (a) $\beta=2$
(b) $\phi=x^{3} y z+y^{2} z+z$
2. (a) $\beta=1 / 2$
(b) $\quad \phi=(1 / 2) x y^{2}+(1 / 2) x^{2}-2 \sqrt{y}$
3. (a) $\nabla \times \mathbf{F}=\langle 0.0 .0\rangle, \quad \nabla \bullet \mathbf{F}=0$
(b) (a) $\nabla \times \mathbf{F}=2\langle y z,-x z,-x y\rangle, \quad \nabla \bullet \mathbf{F}=y^{2}-z^{2}+x^{2}$
4. $\quad \nabla \times \mathbf{F}=\langle 0.0 .0\rangle, \quad \nabla \bullet \mathbf{F}=1 / r=1 / \sqrt{x^{2}+y^{2}}$
5. Identities are all done pretty much the same way, just calculate carefully the LHS (left hand side) and the RHS and check both are equal. You can save a little work by just calculating the first coordinates, if they agree then the entire expressions will agree by symmetry. We will do $5(\mathrm{~b})$ fully as an example.

As usual write $\mathbf{F}=\langle P . Q . R\rangle$. Then $\nabla \times \mathbf{F}=\left\langle R_{2}-Q_{3}, P_{3}-R_{1}, Q_{1}-P_{2}\right\rangle$.
This gives
LHS $=\nabla \times(\nabla \times \mathbf{F})=\left\langle Q_{12}-P_{22}-P_{33}+R_{13}, \quad-, \quad\right\rangle$.
On the other hand
RHS $=\nabla\left(P_{1}+Q_{2}+R_{3}\right)-\left\langle\nabla^{2} P, \nabla^{2} Q, \nabla^{2} R\right\rangle$
$=\left\langle P_{11}+Q_{12}+R_{13}, \quad-, \quad-\right\rangle-\left\langle P_{11}+P_{22}+P_{33}, \quad-, \quad-\right\rangle$
$=\left\langle Q_{12}+R_{13}-P_{22}-P_{33},-, \quad-\right\rangle=$ LHS
6. Another identity, same technique
7. By solving the two linear equations - Math 211 methods - one gets the solution with a single parameter : $x=2 t-1, y=2-t, z=t$. Also, on the $x y$-plane $z=0$, so $t=0$, and at D it is clear $t=2$. From the parametrization we have $\mathbf{v}=d \mathbf{r} / d t=\langle 2,-1,1\rangle$. So $d s=\sqrt{6} d t$. The integral becomes

$$
\int_{0}^{2} t^{2} \sqrt{6} d t=\frac{8 \sqrt{6}}{3}
$$

8. From the given equations a good parametrization is given by choosing $y=t$, then it follows that $x=t^{2}, z=t+1$. One finds that at $A, t=-1$, and at $B, t=0$. By taking \mathbf{v}, one also finds that $d s=\sqrt{4 t^{2}+2} d t$. So the integral becomes

$$
\int_{-1}^{0}(t+1) \sqrt{4 t^{2}+2} d t .
$$

This is a time consuming integral to work out, one will need a substitution like $t=(1 / \sqrt{2}) \tan \theta$. Or it's good practice to try it on MAPLE. The answer is

$$
-\frac{1}{2} \ln (\sqrt{3}-\sqrt{2})+\frac{1}{6} \sqrt{2} .
$$

