The University of Calgary Department of Mathematics and Statistics
 MATH 353 Handout \#4

1. Given $\mathbf{F}(x, y, z)=\left\langle 3 x^{2} y z, \beta y z+x^{3} z, x^{3} y+1+y^{2}\right\rangle$.
(a) Find the value of β so that the field \mathbf{F} is conservative.
(b) Then, find a scalar potential of \mathbf{F}.
2. For $\mathbf{F}(x, y)=\left\langle\beta y^{2}+x, x y-\frac{1}{\sqrt{y}}\right\rangle$, find the value for β so that the field is conservative, then find a potential.
3. Calculate $\operatorname{div} \mathbf{F}$ and curl \mathbf{F} for the following vector fields:
(a) $\mathbf{F}=\mathrm{y} \mathbf{i}+\mathrm{xj}$,
(b) $\mathbf{F}=x y^{2} \mathbf{i}-y z^{2} \mathbf{j}+z x^{2} \mathbf{k}$
4. Calculate div \mathbf{F} and curl \mathbf{F} for the following vector fields in polar coordinates:

$$
\mathbf{F}=\hat{\mathbf{r}}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}
$$

5. Let ϕ and ψ be scalar fields and \mathbf{F} and \mathbf{G} be vector fields. Assume all are sufficiently smooth, prove the following identities:
(a) $\nabla \bullet(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \bullet \mathbf{G}-\mathbf{F} \bullet(\nabla \times \mathbf{G})$
(b) $\nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \bullet \mathbf{F})-\nabla^{2} \mathbf{F}$
6. If ϕ and ψ are smooth scalar fields, show that

$$
\nabla \times(\phi \nabla \psi)=-\nabla \times(\psi \nabla \phi)=\nabla \phi \times \nabla \psi .
$$

7. Evaluate $\int_{c} f d s$ where $f(x, y, z)=z^{2}$ and c is the part of the line of intersection of two planes $x+y-z=1$ and $2 x+y-3 z=0$ between the xy-plane and the point $D=(3,0,2)$.
8. Evaluate $\int_{c} z d s$ where c is the intersection of the plane $z-y=1$ and the cylindrical surface $0=x-y^{2}$ between $A=(1,-1,0)$ and $B=(0,0,1)$.
