The University of Calgary Department of Mathematics and Statistics MATH 353 Handout \#5 Answers

1. It's easy to check, following the hint, that \mathbf{F} is conservative. Also the curve \mathcal{C}, being the intersection of a paraboloid with an oblique plane, is a closed curve. That's all one needs, the line integral $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}=0$ for any conservative vector field around any closed curve.
2. This question is routine since the curve \mathcal{C} is already parametrized. You should find that the integral reduces to $\int_{0}^{1}\left(e^{t}+2 t e^{t}+2 t e^{t}\right) d t$, and the answer is $e+3$.
3. Following the hint, notice that the portion $\left\langle y e^{x y}, x e^{x y}\right\rangle$ of the given vector field is conservative (a potential function for this would be $\phi=e^{x y}$), so this part integrates to 0 around the closed curve \mathcal{C}. Therefore just use the remaining part of the vector field $\langle 0, x\rangle$. As usual parametrize the curve, which is the unit circle, by $\mathbf{r}=\langle\cos t, \sin t\rangle, 0 \leq t \leq 2 \pi$. It is now routine to find that the integral reduces to $\int_{0}^{2 \pi}(\cos (t))^{2}=\pi$, where the last integral is worked out using the double angle formula for $(\cos t)^{2}$.
4. (a) Use $\mathbf{r}=\langle 2 \cos u, 2 \sin u, v\rangle$. One finds $\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|=2$, so $d S=2 d u d v$. The surface area is then given by

$$
\int_{0}^{\pi / 2} \int_{0}^{5-4 \cos u-2 \sin u} 2 d v d u=5 \pi-12 .
$$

(b) Use $\mathbf{r}=\langle v \cos u, v \sin u, 5-2 v \cos u-v \sin u\rangle$. One finds $d S=\sqrt{6} v$, and finally gets

$$
\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{6} v d v d u=4 \sqrt{6} \pi .
$$

5. Here the simple parametrization $\mathbf{r}=\left\langle x, y, x^{2} / 2\right\rangle$ works well. One then finds $d S=\sqrt{x^{2}+1} d y d x$. This gives a pretty tough looking integral but fortunately it works out easily with the substitution $u=1-x^{4}$, we don't show all details (the region is the quarter of the unit disk in the 4'th quadrant) :

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{0} \frac{1}{2} x^{3} \sqrt{1+x^{2}} d y d x=\int_{0}^{1} x^{3} \sqrt{1-x^{4}} d x=\frac{1}{12} .
$$

6. Parametrize with $\mathbf{r}=\langle x, y, 2-x-y\rangle$. Then $d S=\sqrt{3} d v d u$. Integrating over the elliptical disk $x^{2}+2 y^{2} \leq 1$ gives

$$
\int_{-1}^{1} \int_{-\frac{\sqrt{2}}{2} \sqrt{1-x^{2}}}^{\frac{\sqrt{2}}{2} \sqrt{1-x^{2}}} x^{2} \sqrt{3} d y d x
$$

Now the substitution $x=r \cos \theta, y=\frac{1}{\sqrt{2}} \sin \theta$ will simplify things. By taking the Jacobian determinant we find $d y d x=\frac{r}{\sqrt{2}} d r d \theta$, and finally get

$$
\frac{\sqrt{3}}{\sqrt{2}} \int_{0}^{2 \pi} \int_{0}^{1} r^{2}(\cos \theta)^{2} \cdot r d r d \theta=\frac{\sqrt{6}}{8} \pi
$$

7. There are three regions (surfaces) and one has to add the flux over each one. The bottom region is the disk $z=0, x^{2}+y^{2} \leq 4$, with outward unit normal $\mathbf{N}=\langle 0,0,-1\rangle$. Here $\mathbf{F}=\langle 1,1,0\rangle$ (since $z=0$), so $\mathbf{F} \bullet \mathbf{N}=0$ and the flux for this part is 0 . The top region is similar, with $\mathbf{N}=\langle 0,0,1\rangle$ and also $z=3$. One then gets for this region

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 3\left(x^{2}+y^{2}\right)^{2} d y d x
$$

and this is easily done by converting to polar coordinates

$$
3 \int_{0}^{2 \pi} \int_{0}^{2} r^{4} \cdot r d r d \theta=64 \pi
$$

For the cylindrical part, it is the same cylinder as in 4(a) so use the same parametrization. It gives $\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle 2 \cos u, 2 \sin u, 0\rangle$, so $\mathbf{N} d S=\langle 2 \cos u, 2 \sin u, 0\rangle d u d v$, giving for the flux on this part

$$
\iint \mathbf{F} \bullet \mathbf{N} d S=2 \int_{0}^{2 \pi} \int_{0}^{3}(\cos u+\sin u) d v d u=2 \cdot 3 \cdot \int_{0}^{2 \pi}(\cos u+\sin u) d u=0 .
$$

Adding the three contributions gives 64π.
Remark: This problem can be done a second way, using the divergence theorem, and it is much easier this way. It will be on Handout 6 .
8. Use $\mathbf{r}=\left\langle x, y, \sqrt{4-y^{2}}\right\rangle$. One finds

$$
\begin{gathered}
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left\langle 0, \frac{y}{\sqrt{4-y^{2}}}, 1\right\rangle \\
\iint \mathbf{F} \bullet \mathbf{N} d S=\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}\left(\frac{y^{2}}{\sqrt{4-y^{2}}}+x \sqrt{4-y^{2}}\right) d x d y
\end{gathered}
$$

This hard looking integral actually simplifies lots when done, giving 16/3.
Remark: A good sketch of the surface is helpful to see what the region of integration in the $x y$-plane should be. It is the semidisk $0 \leq y \leq \sqrt{4-x^{2}}$, which should explain where the limits of integration on the double integral come from.

