MATH 353-Winter 2010 Handout \#5

1. Find $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\langle y, x+z, y-2 z\rangle$ and \mathcal{C} is the intersection of the plane $z=2 x$ and the paraboloid $z=x^{2}+y^{2}$. [Hint : test the vector field \mathbf{F} to see if it is conservative.]
2. Find $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\left\langle z, e^{(y / x)}, 2 x\right\rangle$ and \mathcal{C} is given by $\mathbf{r}(t)=$ $\left\langle t, t^{2}, e^{t}\right\rangle, 0 \leq t \leq 1$.
3. Find $\int_{\mathcal{C}} \mathbf{F} \bullet d \mathbf{r}$ where $\mathbf{F}(x, y)=\left\langle y e^{x y}, x e^{x y}+x\right\rangle$ and \mathcal{C} is the circle $x^{2}+y^{2}=1$, oriented counterclockwise. [Hint : you can save a lot of work by noticing that part of the vector field \mathbf{F} is conservative.]
4. Find the surface area of \mathcal{S}
(a) which is the part of the cylinder $x^{2}+y^{2}=4$ in the first octant below the plane $2 x+y+z=5$;
(b) which is the part of the plane $2 x+y+z=5$ inside the cylinder $x^{2}+y^{2}=4$.
5. Evaluate $\iint_{\mathcal{S}} z x d S$ where \mathcal{S} is the part of $z=\frac{x^{2}}{2}$ which lies inside $x^{2}+y^{2}=1, x>0, y<0$.
6. Evaluate $\iint_{\mathcal{S}} x^{2} d S$ where \mathcal{S} is the part of the plane $x+y+z=2$ inside the cylinder $x^{2}+2 y^{2}=1$.
7. Find the flux of $\mathbf{F}=\mathbf{i}+\mathbf{j}+z\left(x^{2}+y^{2}\right)^{2} \mathbf{k}$ out of the closed surface (including the top and bottom of the cylinder) $\mathcal{S}=\left\{(x, y, z): x^{2}+y^{2}=\right.$ $4,0 \leq z \leq 3\}$.
8. Find the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$ where \mathcal{S} is the part of the cylinder $y^{2}+z^{2}=4$ which lies inside the cylinder $x^{2}+y^{2}=4, y, z \geq 0$, oriented upward, and the field is $\mathbf{F}(x, y, z)=\left\langle x^{2} y z, y, x z\right\rangle$.
